在∠AOB的OA邊上取m個點,在OB邊上取n個點(均除O點外),連同O點共m+n+1個點,現(xiàn)任取其中三個點為頂點作三角形,可作的三角形有(  )
A、
C
1
m+1
C
2
n
+
C
1
n+1
C
2
m
B、
C
1
m
C
2
n
+
C
1
n
C
2
m
C、
C
1
m
C
2
n
+
C
1
n
C
2
m
+
C
1
m
C
1
n
D、
C
1
m
C
2
n+1
+
C
2
m+1
C
1
n
考點:組合及組合數(shù)公式
專題:概率與統(tǒng)計
分析:利用加法原理求解.
解答: 解:第一類辦法:從OA邊上(不包括O)中任取一點與從OB邊上(不包括O)中任取兩點,
可構造一個三角形,有
C
1
m
C
2
n
個;
第二類辦法:從OA邊上(不包括O)中任取兩點與OB邊上(不包括O)中任取一點,
O點可構造一個三角形,有C
C
1
n
C
2
m
個;
第三類辦法:從OA邊上(不包括O)任取一點與OB邊上(不包括O)中任取一點,
O點可構造一個三角形,有
C
1
m
C
1
n
個.
由加法原理共有N=
C
1
m
C
2
n
+
C
1
n
C
2
m
+
C
1
m
C
1
n
個三角形.
故選:C.
點評:本題考查滿足條件的三角形個數(shù)的求法,解題時要注意加法原理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A、B、C的對邊長分別為a、b、c,且滿足5a2=c2+b2,BE與CF分別為邊AC、AB上的中線,則BE與CF夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1,(n∈NΦ),則{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,則
x-2y-9
y+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊.已知:2
2
(sin2A-sin2C)=(a-b)sinB,△ABC的外接圓半徑為
2
,
(1)求角C和邊c;
(2)求△ABC面積S的最大值并判斷取得最大值時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD,在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45n(其中點P,Q分別在邊BC,CD上),設∠PAB=θ,tanθ=t.
(1)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值.
(2)問探照燈照射在正方形ABCD內(nèi)部區(qū)域陰影部分的面積S最大為多少(平方百米)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx•cosx+
3
cos2x-
3
2
(-
π
6
≤x≤
π
3
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足f(x+1)=f(x-1),當-1<x≤1時,f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|恰好有6個零點,則a有取值范圍是( 。
A、a∈[
1
5
,
1
3
]∪[3,5]
B、a∈[0,
1
5
]∪[5,+∞]
C、a∈[
1
7
1
5
]∪[5,7]
D、(
1
7
,
1
5
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
(1+i)2
i3
的值為( 。
A、2-iB、2+iC、-2D、2

查看答案和解析>>

同步練習冊答案