函數(shù)f(x)=
1-2x
,則f′(-4)=( 。
A、-
1
6
B、-
1
3
C、
1
6
D、
1
3
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的求導(dǎo)公式,求出f′(x)=yu′•ux′=-
1
1-2x
,進(jìn)而將x=-4代入可得答案.
解答: 解:∵f(x)=
1-2x
=(1-2x)
1
2
,
令u=1-2x,則y=u
1
2
,
則f′(x)=yu′•ux′=
1
2
u
1
2
-1
•(-2)=-
1
1-2x
,
∴f′(-4)=-
1
1-2×(-4)
=-
1
3
,
故選:B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是導(dǎo)數(shù)的運(yùn)算,其中根據(jù)已知中的函數(shù)解析式,根據(jù)復(fù)合函數(shù)的求導(dǎo)公式:f′(x)=yu′•ux′,求出導(dǎo)函數(shù)的解析式是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正方體中,直線A1B與B1C所成的角的大小為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ξ服從正態(tài)分布N(10,σ2),若P(ξ<11)=0.9,則P(|ξ-10|<1)=(  )
A、0.1B、0.2
C、0.4D、0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.若sinC+sin(B-A)=sin2A,則△ABC的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各命題中正確的命題是(  )
①“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是奇數(shù)”;
②命題“?x0,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
③在△ABC中,AB=3,AC=5,cosA=-
3
5
,則△ABC的面積為6;
④“函數(shù)f(x)=ax3-2x2+5x+3在R上是增函數(shù)”的充要條件是“a≤
4
15
”.
A、②③B、①②③
C、①②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次試驗(yàn)中,所抽取的樣本共有5個(gè)個(gè)體,其值分別為0,1,2,3,a.若該樣本的平均值為1,則樣本的標(biāo)準(zhǔn)差為( 。
A、2
B、
6
5
C、
6
5
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g(x)=px-
q
x
-2f(x),其中f(x)=lnx,且g(e)=qe-
p
e
-2(e為自然對數(shù)的底數(shù)).
(1)求p與q的關(guān)系;
(2)若g(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(3)若a∈R,試討論方程f(x)=x+a的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2
(1)求證:AC⊥SB;
(2)求二面角C-SA-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2
π
4
+ωx)-
3
cos2ωx-1(ω>0)的最小正周期為
3

(Ⅰ)求ω的值;
(Ⅱ)當(dāng)x∈[
π
6
π
2
]
時(shí),求f(x)的值域.
(Ⅲ)不畫圖,說明函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到.

查看答案和解析>>

同步練習(xí)冊答案