(2011•山東)如圖,在四棱臺ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

(1)見解析    (2)見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在四棱柱中,底面是等腰梯形,,是線段的中點.

(Ⅰ)求證:;
(Ⅱ)若垂直于平面,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,且CE∥AB.

(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點M在線段PD上.

(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點,將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四棱錐底面是菱形,,,分別是的中點.

(1)求證:平面⊥平面;
(2)上的動點,與平面所成的最大角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,,頂點在底面上的射影恰為點
(1)證明:平面平面;
(2 )若點的中點,求出二面角的余弦值.

(1)證明:平面平面;
(2)若點的中點,求出二面角的余弦值.

查看答案和解析>>

同步練習冊答案