設(shè)橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,離心率為,在x軸負(fù)半軸上有一點(diǎn)B,且=2.
(1)若過A、B、F2三點(diǎn)的圓恰好與直線x-y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.
解:(1)由題意,得,所以 又,由于,所以為的中點(diǎn), 所以 所以的外接圓圓心為,半徑;3分 又過三點(diǎn)的圓與直線相切, 所以解得, 所求橢圓方程為;6分 (2)有(1)知,設(shè)的方程為: 將直線方程與橢圓方程聯(lián)立 ,整理得 設(shè)交點(diǎn)為,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0151/0021/f196f39612da282da0c2c13d8a8a7501/C/Image142.gif" width=73 height=21> 則;8分 若存在點(diǎn),使得以為鄰邊的平行四邊形是菱形, 由于菱形對(duì)角線垂直,所以(+).=0 又+ 又的方向向量是,故,則 ,即 由已知條件知;11分 ,故存在滿足題意的點(diǎn)且的取值范圍是;13分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
設(shè)橢圓C:+=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題
設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com