不等式x2-3x+2>0的解集是( 。
A、∅
B、R
C、(1,2)
D、(-∞,1)∪(2,+∞)
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:先對一元二次不等式進行因式分解,再根據(jù)該一元二次不等式的系數(shù)是正數(shù),大于0的解集在兩根之外,可求出所求.
解答: 解:∵x2-3x+2>0,
∴(x-1)(x-2)>0,
解得x<1或x>2,
∴不等式x2-3x+2>0的解集是(-∞,1)∪(2,+∞).
故選:D.
點評:本題主要考查一元二次不等式的解法,解題的一般步驟是將二次項系數(shù)化成正數(shù),然后因式分解,根據(jù)大于0的解集在兩根之外,小于0的解集在兩根之間,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖中的曲線是一段半圓弧,則這個幾何體的表面積是( 。
A、12-πB、12+π
C、14-πD、14+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,集合A={x|2>2x-1≥1},集合B={x|y=ln(1-x)},則A∩(∁UB)=( 。
A、[1,2]
B、(1,2]
C、[1,2)
D、(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x+1)為奇函數(shù),y=f(x-1)為偶函數(shù),且f(0)=1,則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:x→log2x是集合A到對應(yīng)的集合B的映射,若A={1,2,4},則A∩B等于( 。
A、{1}B、{2}
C、{1,2}D、{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x

(1)求f(
π
12
)
的值;
(2)當x∈[0,
π
2
]
,求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-3
-
1
lg(7-x)
的定義域為集合A,B={x∈Z|2<x<10}
(1)求A
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個邊長為4的正方形及其內(nèi)切圓,若隨機向正方形內(nèi)丟一粒豆子,假設(shè)豆子不落在線上,則豆子不落入圓內(nèi)的概率是( 。
A、1-
π
8
B、π
C、
π
2
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某早餐店的早點銷售價格如下:
飲料 豆?jié){ 牛奶
單價 1元 2.5元 1元
面食 油條 面包 包子
單價 1元 4元 1元
假設(shè)小明的早餐搭配為一杯飲料和一個面食.
(1)求小明的早餐價格最多為3元的概率;
(2)求小明不喝牛奶且不吃油條的概率.

查看答案和解析>>

同步練習(xí)冊答案