設(shè)有兩個命題:p:不等式數(shù)學(xué)公式對x∈R恒成立,q:f(x)=-(7-2m)x是R上的減函數(shù);如果“p或q”為假命題,求實數(shù)m的取值范圍.

解:不等式對x∈R恒成立,
等價于,
,(2x-x2max=1
可得當(dāng)p真:1<m≤4,則p假:m≤1或m>4;
f(x)=-(7-2m)x是R上的減函數(shù),則(7-2m)>1
可得當(dāng)q真:m<3,則q假:m≥3
“p或q”為假命題,表示p假而且q假
故實數(shù)m的取值范圍為m>4
分析:由不等式恒成立可得到m的范圍,由符合函數(shù)的真假及指數(shù)函數(shù)的單調(diào)性,可求m的另一個范圍,最后把復(fù)合命題“p或q”為假命題轉(zhuǎn)化為p假而且q假,從而取交集的答案.
點評:本題考查復(fù)合命題的真假,涉及函數(shù)的最值問題及恒成立問題,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:
①兩直線m,n與平面α所成的角相等的充要條件是m∥n;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個.
其中真命題的序號是
②③
②③
.(漏填、多填或錯填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有以下四個命題:
①兩直線m,n與平面α所成的角相等的充要條件是mn;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個.
其中真命題的序號是______.(漏填、多填或錯填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省茂名實驗中學(xué)高考數(shù)學(xué)模擬試卷一(理科)(解析版) 題型:填空題

有以下四個命題:
①兩直線m,n與平面α所成的角相等的充要條件是m∥n;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個函數(shù),其中在R上是增函數(shù)的函數(shù)有3個.
其中真命題的序號是    .(漏填、多填或錯填均不得分)

查看答案和解析>>

同步練習(xí)冊答案