設(shè)直線與橢圓相交于AB兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(1)證明:
(2)若的面積取得最大值時的橢圓方程.
(1)見解析
(2)△OAB的面積取得最大值的橢圓方程是


代入消去
   ①………………………… 3分
由直線l與橢圓相交于兩個不同的點(diǎn)得
整理得,即 ………5分
(2)解:設(shè)由①,得
而點(diǎn), ∴
代入上式,得 ……………8分
于是,△OAB的面積--------11分
其中,上式取等號的條件是 ……………………12分
可得
這兩組值分別代入①,均可解出
∴△OAB的面積取得最大值的橢圓方程是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P與定點(diǎn)F的距離和它到定直線l:的距離之比是1 : 2.
(1)求點(diǎn)P的軌跡C方程;
(2)過點(diǎn)F的直線交曲線C于A, B兩點(diǎn), A, B在l上的射影分別為M, N.
求證AN與BM的公共點(diǎn)在x軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率為,點(diǎn)到F點(diǎn)的距離為,(1)求橢圓的方程;
(2)直線與橢圓交于不同的兩點(diǎn)M、N兩點(diǎn),若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的左、右焦點(diǎn)分別為,拋物線的焦點(diǎn)為F。若,則此橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求橢圓為參數(shù))的準(zhǔn)線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓上的動點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(I)求點(diǎn)G的軌跡C的方程;
(II)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)標(biāo)準(zhǔn)橢圓的兩焦點(diǎn)為在橢圓上,且.  (1)求橢圓方程;(2)若N在橢圓上,O為原點(diǎn),直線的方向向量為,若交橢圓于A、B兩點(diǎn),且NANB軸圍成的三角形是等腰三角形(兩腰所在的直線是NA、NB),則稱N點(diǎn)為橢圓的特征點(diǎn),求該橢圓的特征點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓+=1及點(diǎn)M(2,1),F1、F2分別是橢圓的左、右焦點(diǎn),設(shè)A是橢圓上的動點(diǎn),則|AM|+|AF2|的最大值是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程是           

查看答案和解析>>

同步練習(xí)冊答案