已知函數(shù)f(x)的定義域為D:(-∞,0)∪(0,+∞),且滿足對于任意x,y∈D,有f(xy)=f(x)+f(y).
(I)求f(1),f(-1)的值;
(II)判斷f(x)的奇偶性并說明理由;
(III)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

解:(1)∵f(xy)=f(x)+f(y)對于任意x,y∈R都成立.
令x=y=1,則f(1)=f(1)+f(1),解得f(1)=0;
令x=y=-1,則f(1)=f(-1)+f(-1),解得f(-1)=0;
(2)函數(shù)f(x)是R上的奇函數(shù).
證明:令x=y=0,則f(0)=f(0)+f(0),解得f(0)=0;
令y=-x,則f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴函數(shù)f(x)是R上的奇函數(shù).
(3)∵f(xy)=f(x)+f(y),f(4)=1
則f(16)=f(4×4)=f(4)+f(4)=2f(4)=2,
∴f(64)=f(4×16)=f(4)+f(16)=3
所以f(3x+1)+f(2x-6)=f[(3x+1)(2x-6)]=f(6x2-16x-6)≤3=f(64)
已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù)
所以f(0)<f(6x2-16x-6)≤f(64)
即0<6x2-16x-6≤64,解得:3<x≤5.
分析:對于抽象函數(shù)的求解策略和方法為賦值法,(1)令x=y=1,代入已知條件,求出f(1)=0,再令x=y=-1,即可求得f(-1);
(2)令x=y=1,代入已知條件,求出f(0)=0,再令y=-x,代入已知條件即可判定函數(shù)的奇偶性.
(3)由f(xy)=f(x)+f(y),f(4)=1,知f(16)=2,則f(64)=3,所以f(3x+1)+f(2x-6)=f[(3x+1)(2x-6)]=f(6x2-16x-6)≤3=f(64)
已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),所以f(0)<f(6x2-16x-6)≤f(64),由此能求出x的取值范圍.
點評:本題考查抽象函數(shù)的有關(guān)問題,其中賦值法是常用的方法,考查函數(shù)的奇偶性的定義,以及不等式的解法,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的有(  )個.
①已知函數(shù)f(x)在(a,b)內(nèi)可導,若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導數(shù)存在;反之若函數(shù)f(x)在點P處的導數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習冊答案