已知2
2
1
(k+1)dx≤4,則實數(shù)k的取值范圍為
[1,3]
[1,3]
分析:先利用積分定理求出
2
1
(k+1)dx
,然后解不等式即可求解k的范圍
解答:解:由積分知識可得,
2
1
(k+1)dx
=
(k+1)x|
2
1
=2k+2-(k+1)=k+1
∴2≤k+1≤4
∴1≤k≤3
故答案為:[1,3]
點評:本題主要考查了定積分定理的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G的中心在坐標(biāo)原點,長軸在x軸上,離心率為
3
2
,兩個焦點分別為F1和F2,橢圓G上一點到F1和F2的距離之和為12.圓Ck:x2+y2+2kx-4y-21=0(k∈R)的圓心為點Ak
(1)求橢圓G的方程
(2)求△AkF1F2的面積
(3)問是否存在圓Ck包圍橢圓G?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知2≤
2
1
(kx+1)dx≤4
,則實數(shù)k的取值范圍為
[
2
3
,2]
[
2
3
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)已知各項均為正整數(shù)的數(shù)列{an}滿足an<an+1,且存在正整數(shù)k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當(dāng)k=3,a1a2a3=6時,求數(shù)列{an}的前36項的和S36;
(2)求數(shù)列{an}的通項an
(3)若數(shù)列{bn}滿足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項積為Tn,試問n為何值時,Tn取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普寧市模擬)為了確保神州七號飛船發(fā)射時的信息安全,信息須加密傳輸,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的a,b,c,…,z的26個字母(不論大小寫)依次對應(yīng)1,2,3,…,26這26個自然數(shù)(見下表):
a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26
通過變換公式:x=
x+1
2
(x∈N*,x≤26,x不能被2整除)
x
2
+13(x∈N*,x≤26,x能被2整除)
,將明文轉(zhuǎn)換成密文,如8→
8
2
+13
=17,即h變換成q;5→
5+1
2
=3
,即e變換成c.若按上述規(guī)定,若將明文譯成的密文是shxc,那么原來的明文是(  )

查看答案和解析>>

同步練習(xí)冊答案