(2013•湖北)設(shè)n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(2)證明:;
(3)設(shè)x∈R,記[x]為不小于x的最小整數(shù),例如.令的值.
(參考數(shù)據(jù):

(1)0    (2)見解析    (3)211

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題有2個小題,第一小題滿分6分,第二小題滿分1分.
設(shè)常數(shù),函數(shù)
=4,求函數(shù)的反函數(shù);
根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),
當(dāng)0≤x≤1時,f(x)=x.
(1)求f(3)的值;
(2)當(dāng)-4≤x≤4時,求f(x)的圖像與x軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•重慶)某村莊擬修建一個無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=,x∈,
(1) 當(dāng)a=時,求函數(shù)f(x)的最小值;
(2) 若函數(shù)的最小值為4,求實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某幼兒園準(zhǔn)備建一個轉(zhuǎn)盤,轉(zhuǎn)盤的外圍是一個周長為k米的圓.在這個圓上安裝座位,且每個座位和圓心處的支點(diǎn)都有一根直的鋼管相連經(jīng)預(yù)算,轉(zhuǎn)盤上的每個座位與支點(diǎn)相連的鋼管的費(fèi)用為3k元/根,且當(dāng)兩相鄰的座位之間的圓弧長為x米時,相鄰兩座位之間的鋼管和其中一個座位的總費(fèi)用為k元.假設(shè)座位等距分布,且至少有兩個座位,所有座位都視為點(diǎn),且不考慮其他因素,記轉(zhuǎn)盤的總造價為y元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)當(dāng)k=50米時,試確定座位的個數(shù),使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖已知中,,點(diǎn)是邊上的動點(diǎn),動點(diǎn)滿足(點(diǎn)按逆時針方向排列).

(1)若,求的長;
(2)若,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對任意的,存在唯一的,使
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時,有.

查看答案和解析>>

同步練習(xí)冊答案