【題目】已知函數(shù)上單調(diào)遞增,函數(shù)上存在單調(diào)遞減區(qū)間.

1)若“”為真,求實(shí)數(shù)的取值范圍;

2)若“”為真,“”為假,求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)求出當(dāng)命題為真命題時(shí)實(shí)數(shù)的取值范圍,同時(shí)也求出當(dāng)命題為真命題時(shí)實(shí)數(shù)的取值范圍,結(jié)合為真命題可得出實(shí)數(shù)的取值范圍;

2)由題意知,中一真一假,然后分假和真兩種情況討論,即可求出實(shí)數(shù)的取值范圍.

1)若命題是真命題時(shí),則,解得.

若命題為真命題時(shí),當(dāng)時(shí),

時(shí),,此時(shí),函數(shù)上單調(diào)遞增.

當(dāng)時(shí),,此時(shí),函數(shù)上存在單調(diào)遞減區(qū)間.

所以,當(dāng)時(shí),命題為真命題.

為真命題,所以,,因此,實(shí)數(shù)的取值范圍是;

2為真,為假,則、中一真一假.

假,則,可得;若真,則,可得.

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)與兩定點(diǎn)連線(xiàn)的斜率之積為,記點(diǎn)的軌跡為曲線(xiàn).

(1)求曲線(xiàn)的方程;

(2)若過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),曲線(xiàn)上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線(xiàn)的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)令函數(shù),若時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)處取得極大值或極小值,則稱(chēng)為函數(shù)的極值點(diǎn)設(shè)函數(shù)

(1)若函數(shù)上無(wú)極值點(diǎn),求的取值范圍;

(2)求證:對(duì)任意實(shí)數(shù),在函數(shù)的圖象上總存在兩條切線(xiàn)相互平行;

(3)當(dāng)時(shí),若函數(shù)的圖象上存在的兩條平行切線(xiàn)之間的距離為4,問(wèn);這樣的平行切線(xiàn)共有幾組?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.

1)求拋物線(xiàn)的方程;

2)設(shè)直線(xiàn)與拋物線(xiàn)交于兩點(diǎn)、,且,是弦中點(diǎn),過(guò)作平行于軸的直線(xiàn)交拋物線(xiàn)于點(diǎn),得到,再分別過(guò)弦、的中點(diǎn)作平行于軸的直線(xiàn)依次交拋物線(xiàn)于點(diǎn)、,得到,按此方法繼續(xù)下去,解決下列問(wèn)題:

①求證:

②計(jì)算的面積;

③根據(jù)的面積的計(jì)算結(jié)果,寫(xiě)出、的面積,請(qǐng)?jiān)O(shè)計(jì)一種求拋物線(xiàn)與線(xiàn)段所圍成封閉圖形面積的方法,并求此封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某比賽為甲、乙兩名運(yùn)動(dòng)員制訂下列發(fā)球規(guī)則:規(guī)則一:投擲一枚硬幣,出現(xiàn)正面向上,甲發(fā)球,否則乙發(fā)球;規(guī)則二:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球;規(guī)則三:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球.

其中對(duì)甲、乙公平的規(guī)則是(

A.規(guī)則一和規(guī)則二B.規(guī)則一和規(guī)則三C.規(guī)則二和規(guī)則三D.規(guī)則二

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題:①命題“若,”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對(duì)于命題使得,則,均有.其中,真命題的個(gè)數(shù)是 ( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為未達(dá)標(biāo),分?jǐn)?shù)不低于87分的為達(dá)標(biāo)”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1達(dá)標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿(mǎn)意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿(mǎn)意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案