分析 (Ⅰ)消去參數(shù)及利亞極坐標(biāo)與直角坐標(biāo)互化方法,寫出曲線C1,C2的普通方程;
(Ⅱ)直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),將其代入曲線C2整理可得:${t^2}-3\sqrt{2}t+4=0$,利用參數(shù)的幾何運用求|AB|.
解答 解:(Ⅰ)$\left\{\begin{array}{l}x=2\sqrt{5}cosα\\ y=2sinα\end{array}\right.⇒{(\frac{x}{{2\sqrt{5}}})^2}+{(\frac{y}{2})^2}=cos{\;}^2α+{sin^2}α=1$…(1分)
即C1的普通方程為$\frac{x^2}{20}+{\frac{y}{4}^2}=1$.…(3分)
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,C2可化為 x2+y2+4x-2y+4=0,…(3分)
即(x+2)2+(y-1)2=1.…(4分)
(Ⅱ)曲線C1左焦點為(-4,0),…(5分)
直線l的傾斜角為$α=\frac{π}{4}$,$sinα=cosα=\frac{{\sqrt{2}}}{2}$.…(6分)
所以直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),…(7分)
將其代入曲線C2整理可得:${t^2}-3\sqrt{2}t+4=0$,…(8分)
所以△=${(-3\sqrt{2})^2}-4×4=2>0$.
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則${t_1}+{t_2}=3\sqrt{2},{t_1}{t_2}=4$.…(9分)
所以$|{AB}|=|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{{{(3\sqrt{2})}^2}-4×4}=\sqrt{2}$.…(10分)
點評 本題考查參數(shù)方程的運用,考查參數(shù)方程、極坐標(biāo)方程、普通方程的轉(zhuǎn)化,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {1} | C. | {-1,1} | D. | {1,-1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com