(本小題滿分12分)
已知橢圓
的長軸長為
,且點
在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓右焦點的直線
交橢圓于
兩點,若以
為直徑的圓過原點,
求直線
方程.
解:(Ⅰ)由題意:
,
.所求橢圓方程為
.
又點
在橢圓上,可得
.所求橢圓方程為
. …4分
(Ⅱ)由(Ⅰ)知
,所以
,橢圓右焦點為
.
因為以
為直徑的圓過原點,所以
.
若直線
的斜率不存在,則直線
的方程為
.
直線
交橢圓于
兩點,
,不合題意.
若直線
的斜率存在,設(shè)斜率為
,則直線
的方程為
.
由
可得
.
由于直線
過橢圓右焦點,可知
.
設(shè)
,則
,
.
所以
.
由
,即
,可得
.
所以直線
方程為
. ………………12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(.(本小題滿分12分)
如圖,焦距為2的橢圓E的兩個頂點分別為
和
,且
與
共線.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線
與橢圓E有兩個不同的交點
P和
Q,且原點
O總在以
PQ為直徑的圓的內(nèi)部,求實數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
,離心率
,A為右頂點,K為右準線與X軸的交點,且
.
(I)求橢圓的標準方程;
(II)設(shè)橢圓的上頂點為B,問是否存在直線l,使直線l交橢圓于C,D兩點,且橢圓的左焦點巧恰為ΔBCD的垂心?若存在,求出l的方程
r若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)設(shè)
、
分別是橢圓
的左、右焦點.
(1)若
是該橢圓上的一個動點,求
的最大值和最小值;
(2)設(shè)過定點
的直線
與橢圓交于不同的兩點
、
,且∠
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分)已知橢圓的焦點
,過
作垂直于
軸的直線被橢圓所截線段長為
,過
作直線
l與橢圓交于
A、B兩點.
(1)求橢圓的標準方程;
(2)若A是橢圓與y軸負半軸的交點,求
的面積;
(3)是否存在實數(shù)
使
,若存在,求
的值和直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為________ _
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
上的一動點,且
與橢圓長軸兩頂點連線的斜率之積為
,則橢圓離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本不題滿分14分)
已知在平面直角坐標系
中,向量
,△OFP的面積為
,且
。
(1)設(shè)
,求向量
的夾角
的取值范圍;
(2)設(shè)以原點O為中心,對稱軸在坐標軸上,以F為右焦點的橢圓經(jīng)過點M,且
取最小值時,求橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
給出下列命題:①橢圓
的離心率
,長軸長為
;②拋物線
的準線方程為
③雙曲線
的漸近線方程為
;④方程
的兩根可分別作為橢圓和雙曲線的離心率.
其中所有正確命題的序號是
查看答案和解析>>