Loading [MathJax]/jax/output/CommonHTML/jax.js
8.設(shè)函數(shù)f(x)=|2x+1|-|x-4|.
(I)解不等式f(x)>2;
(II)求函數(shù)y=f(x)的最小值.

分析 (I)將絕對值符號去掉,函數(shù)寫成分段函數(shù),再分段求出不等式的解集,即可確定不等式的解集;
(II)分別求函數(shù)的值域,即可求出函數(shù)的最小值.

解答 解:函數(shù)f(x)=|2x+1|-|x-4|={x5x123x312x4x+5x4,
(I)令-x-5>2,則x<-7,∵x12,∴x<-7;
令3x-3>2,則x53,∵-12x4,∴53x4;
令x+5>2,則x>-3,∵x≥4,∴x≥4,
∴f(x)>2的解集為:{x|x<-7或x>53};
(II)當x12時,-x-5≥-92
當-12x4時,-92<3x-3<9,
當x≥4時,x+5≥9
∴函數(shù)y=f(x)的最小值為-92

點評 本題考查絕對值函數(shù),考查分類討論的數(shù)學思想,考查函數(shù)的最值,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.數(shù)列{an}滿足a1=2,an+1+an=2n+3.
(1)求a2,a3,a4;
(2)求an的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知矩形ABCD中,AB=6,AD=4,過點C的直線l與AB,AD的延長線分別交于點M,N.
(1)若△AMN的面積不小于50,求線段DN的長度的取值范圍;
(2)在直線l繞點C旋轉(zhuǎn)的過程中,△AMN的面積S是否存在最小值?若存在,求出這個最小值及相應的AM,AN的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若|AB|=5,|AC|=8,則|BC|的取值范圍是( �。�
A.[3,8]B.(3,8)C.[3,13]D.(3,13)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量a=(cosθ,sinθ),θ∈(0,π),=(1,3),若a\overrightarrow共線,則sin2θ=(  )
A.12B.32C.-12D.-32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知a,b是方程x2-x-2=0的兩個不等的實數(shù)根,則點P(a,b)與圓C:x2+y2=8的位置關(guān)系是( �。�
A.點P在圓C內(nèi)B.點P在圓C外C.點P在圓C上D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+bx+c且f(-1)=f(3),則(  )
A.f (1)>c>f (-1)B.f (1)<c<f (-1)C.c>f (-1)>f (1)D.c<f (-1)<f (1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=12sin(2x-π3),當x=kππ12,(k∈Z)時,取最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|x2+ax-6a2≤0},B={x||x-2|<a},
(1)當a=1時,求A∩B和A∪B;
(2)當B⊆A時,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案