已知函數(shù)f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函數(shù)f(x)的極值;
⑵設g(x)=a(x-1)ex-f(x).
①當a=1時,對任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②設g′(x)為g(x)的導函數(shù).若存在x>1,使g(x)+g′(x)=0成立,求的取值范圍.
⑴f (x)的極大值是f (-1)=e-1,f (x)的極小值是f ()=4;⑵① -1-e-1 ;②(-1,+∞).
【解析】
試題分析: ⑴由 a=2,b=1得,f (x)=(2+)ex, 定義域為(-∞,0)∪(0,+∞);從而可求得 f ′(x)=ex, 令f ′(x)=0,得x1=-1,x2=,列表可求得f (x)的極值.
⑵①當a=1時,g (x)=(x--2)ex,由已知得不等式g (x)≥1在x∈(0,+∞)上恒成立,即b≤x2-2x-在x∈(0,+∞)上恒成立,從而b≤(x2-2x-)min x∈(0,+∞),令h(x)=x2-2x-(x>0)利用函數(shù)導數(shù)求出h(x)的最小值即可.
②由于g (x)=(ax--2a)ex,所以g ′(x)=(+ax--a)ex; 由g (x)+g ′(x)=0,得(ax--2a)ex+(+ax--a)ex=0,整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g (x)+g ′(x)=0成立,等價于存在x>1,2ax3-3ax2-2bx+b=0成立.
注意到a>0,所以=(x>1);設u(x)=(x>1),則問題等價于的最小值(或下確界),利用函數(shù)導數(shù)可判斷u(x)在上的單調性可求得從而可得的取值范圍為(-1,+∞).
試題解析:⑴當a=2,b=1時,f (x)=(2+)ex,定義域為(-∞,0)∪(0,+∞).
所以f ′(x)=ex.令f ′(x)=0,得x1=-1,x2=,列表
x | (-∞,-1) | -1 | (-1,0) | (0,) | (,+∞) | |
f ′(x) | - | - | ||||
f (x) | ↗ | 極大值 | ↘ | ↘ | 極小值 | ↗ |
由表知f (x)的極大值是f (-1)=e-1,f (x)的極小值是f ()=4.
⑵① 因為g (x)=(ax-a)ex-f (x)=(ax--2a)ex,當a=1時,g (x)=(x--2)ex.
因為g (x)≥1在x∈(0,+∞)上恒成立,所以b≤x2-2x-在x∈(0,+∞)上恒成立.
記h(x)=x2-2x-(x>0),則h′(x)=.
當0<x<1時,h′(x)<0,h(x)在(0,1)上是減函數(shù);
當x>1時,h′(x)>0,h(x)在(1,+∞)上是增函數(shù).
所以h(x)min=h(1)=-1-e-1.所以b的最大值為-1-e-1.
②因為g (x)=(ax--2a)ex,所以g ′(x)=(+ax--a)ex.
由g (x)+g ′(x)=0,得(ax--2a)ex+(+ax--a)ex=0,整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g (x)+g ′(x)=0成立,等價于存在x>1,2ax3-3ax2-2bx+b=0成立.
因為a>0,所以=.設u(x)=(x>1),則u′(x)=.
因為x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函數(shù),所以u(x)>u(1)=-1,
所以>-1,即的取值范圍為(-1,+∞).
考點:1.函數(shù)的極值;2.不等式的恒成立;3.存在成立.
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中檢測文科數(shù)學試卷(解析版) 題型:選擇題
橢圓的左右焦點為、,一直線過交橢圓于、兩點,則的周長為 ( )
A.32 B.16 C.8 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題
函數(shù)f(x)=ax3-x在R上為減函數(shù),則( )
A.a≤0 B.a<1 C.a<0 D.a≤1
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質量檢測理科數(shù)學試卷(解析版) 題型:選擇題
已知既有極大值又有極小值,則的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質量檢測理科數(shù)學試卷(解析版) 題型:選擇題
下列命題為真命題的是( )
A.若,則
B.若,則
C.若,則
D.若,則
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質量檢測文科數(shù)學試卷(解析版) 題型:選擇題
若函數(shù)的值域是,則函數(shù)的值域是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省濟寧市高二5月質量檢測理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)已知中,角所對的邊長分別為,若,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com