數(shù)列an=
1
n(n+1)
,其前n項之和為
9
10
,則n=
 
考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:把數(shù)列的通項公式列項,求得數(shù)列的前n項和,由前n項和等于
9
10
求得n的值.
解答: 解:∵an=
1
n(n+1)
=
1
n
-
1
n+1

Sn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1
=
n
n+1

n
n+1
=
9
10
,解得:n=9.
故答案為:9.
點評:本題考查了用裂項相消法求數(shù)列的前n項和,關鍵是正確列項,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c均為非零實數(shù),集合A={x|x=
|a|
a
+
b
|b|
+
ab
|ab|
},則集合A的元素的個數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐曲線C:
x=2cosα
y=
3
sinα
(α為參數(shù))和定點A(0,
3
),F(xiàn)1、F2是此圓錐曲線的左、右焦點,以原點O為極點,以x軸的正半軸為極軸建立極坐標系.
(1)求直線AF2的直角坐標方程;
(2)經過點F1且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點,求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的左右焦點為F1,F(xiàn)2,其中一條漸近線為y=
3
x,點A在雙曲線C上,若|F1A|=2|F2A|,則cos∠AF2F1=( 。
A、
1
4
B、
1
3
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2+y2+xy=2,則x+2y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求值f(
π
3
);
(2)求函數(shù)f(x)的最小正周期及最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若ξ是離散型隨機變量,則E(ξ-E(ξ))的值為( 。
A、E(ξ)
B、0
C、(E(ξ))2
D、2E(ξ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d<0,設bn=(
1
2
 an,又已知b1+b2+b3=
21
8
,b1•b2•b3=
1
8

(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求等差數(shù)列{an}的通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
2
-
1
2x+1
,求證:函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

同步練習冊答案