【題目】如圖,多面體中,平面平面,,四邊形為平行四邊形.
(1)證明:;
(2)若,求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)先通過平面平面得到,再結(jié)合,可得平面,進而可得結(jié)論;
(2)取的中點,的中點,連接,,以點為坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,求這兩個法向量的夾角即可得結(jié)果.
解:(1)因為平面平面,交線為,又,
所以平面,,又,,
則平面,平面,
所以,;
(2)取的中點,的中點,連接,,則平面,平面;
以點為坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系如圖所示,
已知,則,,
,,,,
則,,
設(shè)平面的一個法向量,
由得令,則,,
即;
平面的一個法向量為;
.
所以二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在一個特定時段內(nèi),以點E為中心的7n mile以內(nèi)海域被設(shè)為警戒水域.點E正北55n mile處有一個雷達觀測站A,某時刻測得一艘勻速直線行駛的船只位于點A北偏東45°且與點A相距40n mile的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東(其中,)且與點A相距10n mile的位置C.
(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)在平面直角坐標系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點,求△ABM面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)為兩個隨機事件,給出以下命題:(1)若為互斥事件,且,,則;(2)若,,,則為相互獨立事件;(3)若,,,則為相互獨立事件;(4)若,,,則為相互獨立事件;(5)若,,,則為相互獨立事件;其中正確命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的一個焦點與拋物線:的焦點重合,且離心率為.
(1)求橢圓的標準方程;
(2)過焦點的直線與拋物線交于,兩點,與橢圓交于,兩點,滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)A,B兩點的坐標分別為(﹣1,0),(1,0).條件甲:A、B、C三點構(gòu)成以∠C為鈍角的三角形;條件乙:點C的坐標是方程x2+2y2=1(y≠0)的解,則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進行了一次問卷調(diào)查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在內(nèi)的學生中隨機抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,頂點在底面上的射影恰為點,且
(1)證明:平面平面;
(2)求棱與所成的角的大小;
(3)若點為的中點,并求出二面角的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com