已知F1、F2為橢圓
x2
25
+
y2
9
=1的兩個(gè)焦點(diǎn),過(guò)F1的直線交橢圓于A、B兩點(diǎn),若|F2A|+|F2B|=12,則|AB|=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:運(yùn)用橢圓的定義,可得三角形ABF2的周長(zhǎng)為4a=20,再由周長(zhǎng),即可得到AB的長(zhǎng).
解答: 解:橢圓
x2
25
+
y2
9
=1的a=5,
由題意的定義,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,
則三角形ABF2的周長(zhǎng)為4a=20,
若|F2A|+|F2B|=12,
則|AB|=20-12=8.
故答案為:8
點(diǎn)評(píng):本題考查橢圓的方程和定義,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以雙曲線的焦點(diǎn)為圓心,實(shí)軸長(zhǎng)為半徑的圓與雙曲線的漸近線相切,則雙曲線的離心率為(  )
A、
6
B、
5
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B是橢圓C:
x2
9
+
y2
4
=1
的短軸端點(diǎn),點(diǎn)M橢圓上異于A、B的任意一點(diǎn),直線MA、MB與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1•x2=( 。
A、4B、5C、6D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐的高為1,底面邊長(zhǎng)為2
6
,內(nèi)有一個(gè)球與四個(gè)面都相切,求棱錐的表面積和球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線
x2
25
+
y2
9
=1與曲線
x2
25-k
+
y2
9-k
=1(k<9)的( 。
A、長(zhǎng)軸長(zhǎng)相等B、短軸長(zhǎng)相等
C、離心率相等D、焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定的正整數(shù)n,則由直線y=n2與拋物線y=x2所圍成的封閉區(qū)域內(nèi)(包括邊界)的整點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC,AC⊥CD,|
CD
|=1,
AB
=2
AD
CD
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

抽樣調(diào)查某地區(qū)1000個(gè)有兩個(gè)小孩的家庭﹐得到如下數(shù)據(jù)﹐其中(男,女)代表第一個(gè)小孩是男孩而第二個(gè)小孩是女生的家庭﹐余類推.
家庭別家庭數(shù)
(男,男)261
(男,女)249
(女,男)255
(女,女)235
由此數(shù)據(jù)可估計(jì)該地區(qū)有兩個(gè)小孩家庭的男﹑女孩性別比約為
 
:100.(四舍五入至整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x2-x+4
x-1
在x>1的條件下的最小值為
 
;此時(shí)x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案