已知橢圓C:的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于,兩點(diǎn),連接MA,MB并延長交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.
(1) (2).
【解析】
試題分析:解:(Ⅰ)依題意,,所以. 2分
因為, 所以. 3分
橢圓方程為. 5分
(Ⅱ)因為直線l的斜率為1,可設(shè)l:, 6分
則,
消y得 , 7分
,得.
因為,,
所以 ,. 8分
設(shè)直線MA:,則;同理. 9分
因為 ,
所以 , 即. 10分
所以 ,
所以 ,
,
,
所以 , 所以 . 12分
所以 ,.
設(shè)△ABM的面積為S,直線l與x軸交點(diǎn)記為N,
所以.
所以 △ABM的面積為. 14分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系以及韋達(dá)定理的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點(diǎn),以這四個交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:選擇題
已知橢圓C:的離心率為,過右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線:與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com