分析 (1)當(dāng)x1=0,x2=1,x3=2時(shí),化簡(jiǎn)f(x)=x(x-1)(x-2),再求導(dǎo)并令f′(x)=3x2-6x+2<0,從而解得;
(2)先求導(dǎo)f′(x)=(x-x2)(x-x3)+(x-x1)(x-x3)+(x-x1)(x-x2),從而可判斷f′(x1)=(x1-x2)(x1-x3)>0,f′(x2)<0,f′(x3)>0,從而由函數(shù)零點(diǎn)的判定定理證明即可;
(3)易知f′(α)=f′(β)=0,再求得f′($\frac{{x}_{1}+x{\;}_{2}}{2}$)=($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)=-$\frac{1}{4}$(x1-x2)2<0,f′($\frac{x{\;}_{2}+x{\;}_{3}}{2}$)<0,從而結(jié)合二次函數(shù)的圖象可比較四個(gè)數(shù)的大小.
解答 解:(1)當(dāng)x1=0,x2=1,x3=2時(shí),
f(x)=x(x-1)(x-2),
令f′(x)=3x2-6x+2<0解得,
$\frac{3-\sqrt{3}}{3}$<x<$\frac{3+\sqrt{3}}{3}$,
故函數(shù)f(x)的減區(qū)間為($\frac{3-\sqrt{3}}{3}$,$\frac{3+\sqrt{3}}{3}$);
(2)證明:∵f(x)=(x-x1)(x-x2)(x-x3),
∴f′(x)=(x-x2)(x-x3)+(x-x1)(x-x3)+(x-x1)(x-x2),
又∵x1<x2<x3,
∴f′(x1)=(x1-x2)(x1-x3)>0,
f′(x2)=(x2-x1)(x2-x3)<0,
f′(x3)=(x3-x2)(x3-x1)>0,
故函數(shù)f′(x)在(x1,x2),(x2,x3)上分別有一個(gè)零點(diǎn),
故方程f′(x)=0有兩個(gè)不相等的實(shí)數(shù)根;
(3)∵方程f′(x)=0的兩個(gè)實(shí)數(shù)根是α,β(α<β),
∴f′(α)=f′(β)=0,
而f′($\frac{{x}_{1}+x{\;}_{2}}{2}$)=($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)
=-$\frac{1}{4}$(x1-x2)2<0,
f′($\frac{x{\;}_{2}+x{\;}_{3}}{2}$)=($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x2)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x3)+($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x1)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x3)+($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x1)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x2)
=-$\frac{1}{4}$(x3-x2)2<0,
再結(jié)合二次函數(shù)的圖象可知,
α<$\frac{{x}_{1}+x{\;}_{2}}{2}$<$\frac{x{\;}_{2}+x{\;}_{3}}{2}$<β.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及二次函數(shù)的性質(zhì),同時(shí)考查了函數(shù)的零點(diǎn)的判定定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組別 | 月用電量 | 頻數(shù)統(tǒng)計(jì) | 頻數(shù) | 頻率 |
1 | [0,20) | |||
2 | [20,40) | 正正一 | ||
3 | [40,60) | 正正正正 | ||
4 | [60,80) | 正正正正正 | ||
5 | [80,100) | 正正正正 | ||
6 | [100,120) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com