【題目】已知函數(shù),.
(1)當(dāng)a=2時,求函數(shù)g(x)的零點;
(2)若函數(shù)g(x)有四個零點,求a的取值范圍;
(3)在(2)的條件下,記g(x)的四個零點分別為,求的取值范圍.
【答案】(1)三個零點,分別為(2)(3)
【解析】
(1)根據(jù)函數(shù)零點的定義解方程即可;
(2)利用函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題,利用數(shù)形結(jié)合進(jìn)行判斷求解;
(3)根據(jù)函數(shù)圖象結(jié)合函數(shù)的對稱性進(jìn)行判斷即可.
(1)當(dāng)時,由,解得:或,
當(dāng)時,由,
解得(舍去)或,
∴函數(shù)有三個零點,分別為.
(2)函數(shù)的零點個數(shù)即為的圖象與的圖象的交點個數(shù),
在同一平面直角坐標(biāo)系中作出函數(shù)的圖象與的圖象,
結(jié)合兩函數(shù)圖象可知,函數(shù)有四個零點時,的取值是.
(3)不妨設(shè),
結(jié)合圖象知: 且,,
由,得,又易知,
,
故的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校微信公眾號收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如下:
(1)求這100位留言者年齡的平均數(shù)和中位數(shù);
(2)學(xué)校從參加調(diào)查的年齡在和的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗交流會,贈與年齡在的留言者每人一部價值1000元的手機(jī),年齡在的留言者每人一套價值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價值超過2300元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省為了確定合理的階梯電價分檔方案,對全省居民用量進(jìn)行了一次抽樣調(diào)查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:
(1)若要求80%的居民能按基本檔的電量收費,則基本檔的月用電量應(yīng)定為多少度?
(2)由頻率分布直方圖可估計,居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求曲線在點處的切線方程;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月16日摩拜單車進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時尚,旅順口區(qū)對市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.
(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計 | |
經(jīng)常使用單車用戶 | |||
不常使用單車用戶 | |||
合計 |
(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
(附:
當(dāng)時,有的把握說事件與有關(guān);當(dāng)時,有的把握說事件與有關(guān);當(dāng)時,認(rèn)為事件與是無關(guān)的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)時,求直線l與圓O公共點的一個極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)設(shè), , ,求函數(shù)的最小值;
(3)對(2)中的,若不等式對于任意的時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的值域;
(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com