在空間四邊形ABCD中,E,F(xiàn)依次是AB,DA上的點(diǎn),且
AE
EB
=
AF
FD
,求證:EF∥平面BCD.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:連接BD,EF,由
AE
EB
=
AF
FD
即可證明EF∥BD,又因?yàn)镋F不在平面BCD中,由判定定理即可證明.
解答: 證明:連接BD,EF,
在三角形ABD中,因?yàn)?span id="ssad3fa" class="MathJye">
AE
EB
=
AF
FD
,
所以EF∥BD,
又因?yàn)镋F不在平面BCD中,
所以EF∥平面BCD.
點(diǎn)評:本題主要考查了直線與平面平行的判定定理的應(yīng)用,由題意準(zhǔn)確畫出圖象有助于題目的解決,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,BC=PB=PC,PO⊥AD,O為BC的中點(diǎn).
(1)求證:AB∥平面PCD;
(2)求證:PO⊥底面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設(shè)函數(shù)h(x)=xf(x),當(dāng)a=1,b=0時(shí),若函數(shù)h(x)與g(x)具有相同的單調(diào)區(qū)間,求m的值;
(2)當(dāng)m=0時(shí),記F(x)=f(x)-g(x)
①當(dāng)a=2時(shí),若函數(shù)F(x)在[-1,2]上存在兩個(gè)不同的零點(diǎn),求b的取值范圍;
②當(dāng)b=-
15
2
時(shí),試探究是否存在正整數(shù)a,使得函數(shù)F(x)的圖象恒在x軸的上方?若存在,求出a的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列21,211,2111,…,前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
,
e2
是夾角為60°的兩個(gè)單位向量,則
a
=
e1
+
e2
b
=
e1
-2
e2
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為(  )
A、1
B、
5
2
C、
6
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的公差d≠0,a1=20,且a3,a7,a9成等比數(shù)列.Sn為{an}的前n項(xiàng)和,則S10的值為(  )
A、-110B、-90
C、90D、110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α+3π)=
1
3
,且α∈(
π
2
,π),則
sin(
π
2
+α)
sin(π+α)+cos(
π
2
+α)
=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos15°sin9°+sin6°
sin15°sin9°-cos6°
=
 

查看答案和解析>>

同步練習(xí)冊答案