【題目】已知過原點(diǎn)的動(dòng)直線與圓:相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線:與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.
【答案】(1)(2)(3)存在,
【解析】
(1)將圓的一般方程整理為標(biāo)準(zhǔn)方程,由此得到圓心坐標(biāo);
(2)當(dāng)直線斜率不存在,與圓無交點(diǎn),可知斜率存在,設(shè),將直線方程與圓的方程聯(lián)立,由可確定的范圍,并得到韋達(dá)定理的形式,從而利用表示出中點(diǎn)坐標(biāo),消去后即可得到軌跡方程;結(jié)合的范圍可確定的范圍,從而得到所求軌跡方程;
(3)由(2)可得的圖象,并確定直線所過的定點(diǎn);由數(shù)形結(jié)合的方式可求得結(jié)果.
(1)圓:的方程整理得其標(biāo)準(zhǔn)方程:
圓的圓心坐標(biāo)為
(2)當(dāng)直線斜率不存在時(shí),方程為,與圓無交點(diǎn),不合題意
直線斜率存在,設(shè)
由得:
則,解得:
設(shè),,中點(diǎn)
則,
消去參數(shù)得中點(diǎn)軌跡方程為:
軌跡的方程為:
(3)由(2)知:曲線是圓上的一段劣弧(如圖,不包括兩個(gè)端點(diǎn)),且,
直線:過定點(diǎn)
直線:與圓相切時(shí),與沒有公共點(diǎn)
又,
當(dāng)時(shí),直線:與曲線只有一個(gè)交點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與曲線相切也與曲線相切,則稱直線為曲線和曲線的公切線,已知函數(shù),其中,若曲線和曲線的公切線有兩條,則的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一工廠對(duì)某條生產(chǎn)線加工零件所花費(fèi)時(shí)間進(jìn)行統(tǒng)計(jì),得到如下表的數(shù)據(jù):
零件數(shù)x(個(gè)) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y(分鐘) | 62 | 68 | 75 | 82 | 88 |
(1)從加工時(shí)間的五組數(shù)據(jù)中隨機(jī)選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時(shí)間的均值的概率;
(2)若加工時(shí)間與零件數(shù)具有相關(guān)關(guān)系,求關(guān)于的回歸直線方程;若需加工個(gè)零件,根據(jù)回歸直線預(yù)測(cè)其需要多長時(shí)間.
(,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)40名小學(xué)六年級(jí)學(xué)生進(jìn)行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.已知在全部40人中隨機(jī)抽取1人,抽到肥胖學(xué)生的概率為.
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 3 | ||
不肥胖 | 5 | ||
合計(jì) | 40 |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?請(qǐng)說明你的理由.
參考公式:
①卡方統(tǒng)計(jì)量,其中為樣本容量;
②獨(dú)立性檢驗(yàn)中的臨界值參考表:
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為相圓上一點(diǎn),與軸交于,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點(diǎn)的直線交橢圓于、兩點(diǎn)若的中點(diǎn)為,為原點(diǎn),直線交直線于點(diǎn).求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點(diǎn),求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點(diǎn)在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)數(shù)列的前項(xiàng)和為,對(duì)于任意,是和的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是的前項(xiàng)和,是否存在常數(shù),對(duì)任意,使恒成立?若存在,求取值范圍;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com