某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1 000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)yf(x)模型制定獎勵方案,試用數(shù)學(xué)語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y+2是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.

(1)不符合公司要求(2)328

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a.
(1)判斷命題“對于任意的a∈R(R為實數(shù)集),方程f(x)=1必有實數(shù)根”的真假,并寫出判斷過程.
(2)若y=f(x)在區(qū)間(-1,0)及(0,)內(nèi)各有一個零點,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某興趣小組要測量電視塔AE的高度H(單位:m).如示意圖,垂直放置的標(biāo)桿BC的高度h=4 m,仰角∠ABEα,∠ADEβ.
 
(1)該小組已測得一組α,β的值,算出了tan α=1.24,tan β=1.20,請據(jù)此算出H的值;
(2)該小組分析若干測得的數(shù)據(jù)后,認為適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位:m),使αβ之差較大,可以提高測量精度.若電視塔的實際高度為125 m,試問d為多少時,αβ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2bxc(bc∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時,f(x)≤(xc)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實數(shù)mn同時滿足下列條件:
mn>3;
②當(dāng)h(a)的定義域為[n,m]時,值域為[n2,m2]?若存在,求出m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出的污水量噸收取的污水處理費元,運行程序如下所示:請寫出y與m的函數(shù)關(guān)系,并求排放污水150噸的污水處理費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的自變量的取值區(qū)間為A,若其值域區(qū)間也為A,則稱A為的保值區(qū)間.
(Ⅰ)求函數(shù)形如的保值區(qū)間;
(Ⅱ)函數(shù)是否存在形如的保值區(qū)間?若存在,求出實數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:lg-lg+lg12.5-log89·log278;

查看答案和解析>>

同步練習(xí)冊答案