(本題14分)在(0,1]上定義函數(shù)
又利用f(x)定義一個(gè)數(shù)列:取,令
1)當(dāng)時(shí),寫(xiě)出這個(gè)數(shù)列;
2)當(dāng)時(shí),寫(xiě)出這個(gè)數(shù)列;
3)當(dāng),且由產(chǎn)生的數(shù)列從某一項(xiàng)開(kāi)始以后均為常數(shù),求解析:1)
2)
3)為使所取值產(chǎn)生的數(shù)列在某項(xiàng)開(kāi)始以后每項(xiàng)均為某常數(shù),則必然存在一個(gè)最小的正整數(shù)n使得,因而,于是,進(jìn)一步,依次推理下去,
可知必為形如的數(shù),而m為任意自然數(shù),故所求的(m≥1為整數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省羅源縣第一中學(xué)高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題14分)定義:若函數(shù)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)、,且,都有,則稱(chēng)函數(shù)在區(qū)間D上具有性質(zhì)L。
(1)寫(xiě)出一個(gè)在其定義域上具有性質(zhì)L的對(duì)數(shù)函數(shù)(不要求證明)。
(2)對(duì)于函數(shù),判斷其在區(qū)間上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論。
(3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三回頭考聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題14分)已知函數(shù)在處取得極值,且在處的切線(xiàn)的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設(shè)>0,>0,,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:海南省10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué)(1班) 題型:解答題
(本題滿(mǎn)分14分)在直角坐標(biāo)系xOy中,橢圓C1:的左、右焦點(diǎn)分別為F1、F2.F2也是拋物線(xiàn)C2:的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿(mǎn)足,直線(xiàn)l∥MN,且與C1交于A(yíng)、B兩點(diǎn),若·=0,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題14分)定義:若函數(shù)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)、,且,都有,則稱(chēng)函數(shù)在區(qū)間D上具有性質(zhì)L。
(1)寫(xiě)出一個(gè)在其定義域上具有性質(zhì)L的對(duì)數(shù)函數(shù)(不要求證明)。
(2)對(duì)于函數(shù),判斷其在區(qū)間上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論。
(3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com