對于集合M,定義函數(shù)fM(x)=對于兩個(gè)集合MN,定義集合M△N={x|fM(x)·fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.

(Ⅰ)寫出fA(1)和fB(1)的值,并用列舉法寫出集合A△B;

(Ⅱ)用Card(M)表示有限集合M所含元素的個(gè)數(shù),求Card(X△A)+Card(X△B)的最小值;

(Ⅲ)有多少個(gè)集合對(P,Q),滿足P,QA∪B,且(P△A)△(Q△B)=A△B?

答案:
解析:

  解:(Ⅰ),,;3分

  (Ⅱ)根據(jù)題意可知:對于集合,①若,則;②若,則

  所以要使的值最小,2,4,8一定屬于集合;1,6,10,16是否屬于不影響的值;集合不能含有之外的元素.

  所以當(dāng)為集合{1,6,10,16}的子集與集合{2,4,8}的并集時(shí),取到最小值4;8分

  (Ⅲ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0179/0020/12ea85b92798efad68903513e4d13001/C/Image159.gif" width=186 height=26>,

  所以

  由定義可知:

  所以對任意元素,,

  

  所以

  所以

  由知:

  所以

  所以

  所以,即

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0179/0020/12ea85b92798efad68903513e4d13001/C/Image173.gif" width=88 HEIGHT=21>,

  所以滿足題意的集合對(P,Q)的個(gè)數(shù)為;14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M
,對于兩個(gè)集合M,N,定義集合M?N={x|fM(x)•fN(x)=-1}.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)寫出fA(2)與fB(2)的值,并用列舉法寫出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的個(gè)數(shù),求Card(X?A)+Card(X?B)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,定義函數(shù)fM(x)=
-1,x∈M
  1,x∉M
,對于兩個(gè)集合M、N,定義集合M?N={x|fM(x)•fN(x)=-1}.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)寫出fA(2)與fB(2)的值,
(Ⅱ)用列舉法寫出集合A?B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M.
對于兩個(gè)集合M,N,定義集合M△N={x|fM(x)•fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)寫出fA(1)和fB(1)的值,并用列舉法寫出集合A△B;
(Ⅱ)用Card(M)表示有限集合M所含元素的個(gè)數(shù),求Card(X△A)+Card(X△B)的最小值;
(Ⅲ)有多少個(gè)集合對(P,Q),滿足P,Q⊆A∪B,且(P△A)△(Q△B)=A△B?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M
,對于兩個(gè)集合M,N,定義集合M?N={x|fM(x)•fN(x)=-1.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)寫出fA(2)與fB(2)的值,并用列舉法寫出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的個(gè)數(shù),求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少個(gè)集合對(P,Q),滿足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M
,對于兩個(gè)集合M,N,定義集合M*N={x|fM(x)•fN(x)=-1},已知A={2,4,6},B={1,2,4},則下列結(jié)論不正確的是( 。
A、1∈A*B
B、2∈A*B
C、4∉A*B
D、A*B=B*A

查看答案和解析>>

同步練習(xí)冊答案