已知過點A(-2,m),和點B(m,4)的直線與直線2x+y-1=0平行,則兩平行線間的距離是
 
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,兩直線的斜率相等.求出m,然后利用平行線的距離公式求解即可.
解答: 解:∵直線2x+y-1=0的斜率等于-2,
∴過點A(-2,m)和B(m,4)的直線的斜率k也是-2,
4-m
m+2
=-2,解得,m=-8,
兩平行線間的距離:
|-2×2-8-1|
22+1
=
13
5
5

故答案為:
13
5
5
點評:本題考查兩斜率存在的直線平行的條件是斜率相等,以及斜率公式的應用.同時考查平行線之間距離公式的求法,轉(zhuǎn)化思想的應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx,則它可以由y=f′(x)的圖象按照下列哪種交換得到( 。
A、向右平移
π
2
個單位
B、向左平移
π
2
個單位
C、向右平移
π
3
個單位
D、向左平移
2
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題 p:“?x0∈R,x02-x0+1<0”,則¬p為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由余弦函數(shù)的周期性可知:
余弦函數(shù)在每一個閉區(qū)間
 
上都是增函數(shù),其值從-1增大到1;在每一個閉區(qū)間
 
上都是減函數(shù),其值從1減小到-1.
從上述對正弦函數(shù)、余弦函數(shù)的單調(diào)性的討論中容易得到:
正弦函數(shù)當且僅當x=
 
時取得最大值1,當且僅當x=
 
時取得最小值-1;
余弦函數(shù)當且僅當x=
 
時取得最大值1;當且僅當x=
 
時取得最小值-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖及部分數(shù)據(jù)如圖所示,側(cè)視圖為等腰三角形,俯視圖為正方形,則這個幾何體的體積為(  )
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,是真命題的是( 。
A、平面內(nèi)與兩定點距離之和為常數(shù)的點的軌跡是橢圓
B、平面內(nèi)與兩定點距離之差絕對值為常數(shù)的點的軌跡是雙曲線
C、平面內(nèi)到點A(0,3)和到定直線y=-6距離相等的點的軌跡是拋物線
D、一個命題的否命題為真,則它本身一定為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=ax-x.
(1)求函數(shù)y=f(x)的極值點;
(2)對x∈R使f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=x-alnx,g(x)=
1+a
x

(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)若在[1,e](e=2.718…)上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
2
(x+|x|)
,則函數(shù)f[f(x)]的值域為
 

查看答案和解析>>

同步練習冊答案