【題目】已知雙曲線C1-=1

1)若點(diǎn)M3,t)在雙曲線C1上,求M點(diǎn)到雙曲線C1右焦點(diǎn)的距離;

2)求與雙曲線C1有共同漸近線,且過點(diǎn)(-3,2)的雙曲線C2的標(biāo)準(zhǔn)方程.

【答案】142x2-=1

【解析】

1)由題得t2=12-1=15,再利用兩點(diǎn)間的距離公式求得M點(diǎn)到雙曲線C1右焦點(diǎn)的距離;(2)設(shè)雙曲線C2的方程為-=mm≠0m≠1),代入點(diǎn)(-32),即得m的值和雙曲線的標(biāo)準(zhǔn)方程.

解:(1)雙曲線C1-=1的右焦點(diǎn)為(4,0),

點(diǎn)M3,t)在雙曲線C1上,可得t2=12-1=15,

M點(diǎn)到雙曲線C1右焦點(diǎn)的距離為=4;

2)與雙曲線C1有共同漸近線,可設(shè)雙曲線C2的方程為-=mm≠0,m≠1),

代入點(diǎn)(-3,2),可得m=-=,

則雙曲線C2的標(biāo)準(zhǔn)方程為x2-=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求解下列各題.

(1)已知,且為第一象限角,求,;

(2)已知,且為第三象限角,求,;

(3)已知,且為第四象限角,求,;

(4)已知,且為第二象限角,求,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直角邊OAx軸上,頂點(diǎn)B的坐標(biāo)為,直線CDAB于點(diǎn),交x軸于點(diǎn).

(1)求直線CD的方程;

(2)動(dòng)點(diǎn)Px軸上從點(diǎn)出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.

①點(diǎn)P在運(yùn)動(dòng)過程中,是否存在某個(gè)位置,使得?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)中xOy,圓C1x2+y2=8,圓C2x2+y2=18,點(diǎn)M1,0),動(dòng)點(diǎn)AB分別在圓C1和圓C2上,滿足,則的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差d0,則下列四個(gè)命題:

①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;

③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.

其中正確命題的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y滿足約束條件.

1)求目標(biāo)函數(shù)的最值;

2)當(dāng)目標(biāo)函數(shù)在該約束條件下取得最大值5時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,直線ly=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)BC上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,直線AB,AC分別交直線l于點(diǎn)EF.記直線的斜率分別為,

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:m為正整數(shù)),,若,則m所有可能的取值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案