從集合的所有非空子集中,等可能地取出一個.
①記性質(zhì):集合中的所有元素之和為10,求所取出的非空子集滿足性質(zhì)的概率;
②記所取出的非空子集的元素個數(shù)為,求的分布列和數(shù)學(xué)期望.
解:① 
的分布列為:

1
2
3
4
5






 
從而=.
本題考查古典概型和期望,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點(diǎn)結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(diǎn).
(1)記“所取出的非空子集滿足性質(zhì)”為事件.
基本事件的總數(shù),事件包含的基本事件數(shù)是結(jié)合古典概型得到結(jié)論。
(2)由題意知集合{1,2,3,4}的所有非空子集有24-1,等可能地取出一個,每個被取到的概率是 ,所取出的非空子集中元素的個數(shù)為ξ,ξ的可能取值是1、2、3、4,根據(jù)集合的子集寫出分布列,得到期望.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一中食堂有一個面食窗口,假設(shè)學(xué)生買飯所需的時間互相獨(dú)立,且都是整數(shù)分鐘,對以往學(xué)生買飯所需的時間統(tǒng)計結(jié)果如下:
買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學(xué)生開始買飯時計時.
(Ⅰ)估計第三個學(xué)生恰好等待4分鐘開始買飯的概率;
(Ⅱ)表示至第2分鐘末已買完飯的人數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2013年4月20日8時02分四川省雅安市蘆山縣(北緯30.3,東經(jīng)103.0)發(fā)生7.0級地震。一方有難,八方支援,重慶眾多醫(yī)務(wù)工作者和志愿者加入了抗災(zāi)救援行動。其中重慶某醫(yī)院外科派出由5名骨干醫(yī)生組成的救援小組,奔赴受災(zāi)第一線參與救援,F(xiàn)將這5名醫(yī)生分別隨機(jī)分配到受災(zāi)最嚴(yán)重的蘆山、寶山、天全三縣中的某一個。
(1)求每個縣至少分配到一名醫(yī)生的概率。
(2)若將隨機(jī)分配到蘆山縣的人數(shù)記為,求隨機(jī)變量的分布列,期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
根據(jù)公安部最新修訂的《機(jī)動車駕駛證申領(lǐng)和使用規(guī)定》:每位駕駛證申領(lǐng)者必須通過《科目一》(理論科目)、《綜合科》(駕駛技能加科目一的部分理論)的考試.已知李先生已通過《科目一》的考試,且《科目一》的成績不受《綜合科》的影響,《綜合科》三年內(nèi)有5次預(yù)約考試的機(jī)會,一旦某次考試通過,便可領(lǐng)取駕駛證,不再參加以后的考試,否則就一直考到第5次為止.設(shè)李先生《綜合科》每次參加考試通過的概率依次為0.5,0.6,0.7,0.8,0.9.
(1)求在三年內(nèi)李先生參加駕駛證考試次數(shù)的分布列和數(shù)學(xué)期望;
(2)求李先生在三年內(nèi)領(lǐng)到駕駛證的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二十世紀(jì)50年代,日本熊本縣水俁市的許多居民都患了運(yùn)動失調(diào)、四肢麻木等癥狀,人們把它稱為水俁。(jīng)調(diào)查發(fā)現(xiàn)一家工廠排出的廢水中含有甲基汞,使魚類受到污染.人們長期食用含高濃度甲基汞的魚類引起汞中毒. 引起世人對食品安全的關(guān)注.《中華人民共和國環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過1.00ppm.
羅非魚是體型較大,生命周期長的食肉魚,其體內(nèi)汞含量比其他魚偏高.現(xiàn)從一批羅非魚中隨機(jī)地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前一位數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如下:
 
(Ⅰ)若某檢查人員從這15條魚中,隨機(jī)地抽出3條,求恰有1條魚汞含量超標(biāo)的概率;
(Ⅱ)以此15條魚的樣本數(shù)據(jù)來估計這批魚的總體數(shù)據(jù).若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的魚汞含量超標(biāo)的條數(shù),求ξ的分布列及Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)為增強(qiáng)市民交通規(guī)范意識,我市面向全市征召勸導(dǎo)員志愿者,分布于各候車亭或十字路口處.現(xiàn)從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,他們的年齡情況如下表所示.
(1)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題卡中補(bǔ)全頻率分布直方圖(如圖),再根據(jù)頻率分布直方圖估計這500名志愿者中年齡在[30,35)歲的人數(shù);
(2)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加“規(guī)范摩的司機(jī)的交通意識”培訓(xùn)活動,從這20人中選取2名志愿者擔(dān)任主要負(fù)責(zé)人,記這2名志愿者中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
分組(單位:歲)
頻數(shù)
頻率
[20,25)
5
0.05
[25,30)

0.20
[30,35)
35

[35,40)
30
0.30
[40,45]
10
0.10
合計
100
1.00
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲乙兩名射手互不影響地進(jìn)行射擊訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們設(shè)計成績的分布列如下:
射手甲
射手乙
環(huán)數(shù)
8
9
10
環(huán)數(shù)
8
9
10
概率



概率



(Ⅰ)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中10環(huán)的概率;
(Ⅱ)若兩個射手各射擊1次,記所得的環(huán)數(shù)之和為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝著標(biāo)有數(shù)學(xué)1,2,3,4,5的小球各2個,從袋中任取3個小球,按3個小球上最大數(shù)字的9倍計分,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)計分介于20分到40分之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種項目的射擊比賽,開始時在距目標(biāo)100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三次射擊,此時目標(biāo)已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結(jié)束.已知射手甲在100m處擊中目標(biāo)的概率為,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(1)求射手甲在這次射擊比賽中命中目標(biāo)的概率;
(2)求射手甲在這次射擊比賽中得分的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案