7.設(shè)實(shí)數(shù)a∈R,函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x∈(-1,1)時(shí),求滿足不等式f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)根據(jù)函數(shù)奇偶性的定義求出a的值即可,
(Ⅱ)根據(jù)條件判斷函數(shù)的單調(diào)性,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:(Ⅰ)因?yàn)楹瘮?shù)$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函數(shù),所以f(0)=0.(2分)
即$a-\frac{2}{{{2^0}+1}}=0$,解得a=1.(3分)
(Ⅱ)由(Ⅰ),得$f(x)=1-\frac{2}{{{2^x}+1}}$.
因?yàn)閒(x)是R上的奇函數(shù),由f(1-m)+f(1-m2)<0,
得f(1-m)<-f(1-m2),即f(1-m)<f(m2-1).(5分)
下面證明f(x)在R是增函數(shù).
設(shè)x1,x2∈R且x1<x2,則$f({x_1})-f({x_2})=({1-\frac{2}{{{2^{x_1}}+1}}})-({1-\frac{2}{{{2^{x_2}}+1}}})=\frac{{2({{2^{x_1}}-{2^{x_2}}})}}{{({{2^{x_1}}+1})({{2^{x_2}}+1})}}$(6分)
因?yàn)閤1<x2,所以${2^{x_1}}<{2^{x_2}}$,${2^{x_1}}-{2^{x_2}}<0$,而${2^{x_1}}+1>0,{2^{x_2}}+1>0$,
所以$\frac{{2({{2^{x_1}}-{2^{x_2}}})}}{{({{2^{x_1}}+1})({{2^{x_2}}+1})}}<0$,
即f(x1)<f(x2),所以$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的增函數(shù).(8分)
當(dāng)x∈(-1,1)時(shí),由f(1-m)<f(m2-1)得$\left\{\begin{array}{l}-1<1-m<1\\-1<{m^2}-1<1\\ 1-m<{m^2}-1\end{array}\right.$,(10分)
解得$1<m<\sqrt{2}$.
所以,當(dāng)x∈(-1,1)時(shí),滿足不等式f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍是$(1,\sqrt{2})$.(12分)

點(diǎn)評(píng) 本題主要考查不等式的求解,利用函數(shù)奇偶性的性質(zhì)求出函數(shù)的解析式以及利用函數(shù)單調(diào)性和奇偶性將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=(x2+x-1)ex,則f(x)的極大值為$\frac{5}{{e}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖是2013年中央電視臺(tái)舉辦的挑戰(zhàn)主持人大賽上,七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(  )
A.85,1.6B.84,4C.84,1.6D.85,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知在△ABC中,點(diǎn)A(-1,0),B(0,$\sqrt{3}$),C(1,-2).
(1)求AB邊中線所在直線的方程;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)滿足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(18)=p+2q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.計(jì)算機(jī)通常使用若干個(gè)數(shù)字0到1排成一列來(lái)表示一個(gè)物理編號(hào),現(xiàn)有4個(gè)“0”與4個(gè)“1”排成一列,那么用這8個(gè)數(shù)字排成一列能表示的物理信號(hào)的個(gè)數(shù)是( 。
A.140B.110C.70D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在下列條件下,分別求出有多少種不同的做法?
(1)5個(gè)不同的球,放入4個(gè)不同的盒子,每盒至少一球;
(2)5個(gè)相同的球,放入4個(gè)不同的盒子,每盒至少一球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱AA1⊥平面ABC,E,F(xiàn)分別為A1B1,A1C1的中點(diǎn).
(Ⅰ)求證:B1C1∥面BEF;
(Ⅱ)過(guò)點(diǎn)A存在一條直線與平面BEF垂直,請(qǐng)你在圖中畫(huà)出這條直線(保留作圖痕跡,不必說(shuō)明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,在△ABC中,D,E是BC上的兩個(gè)三等分點(diǎn),若$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,$\overrightarrow{AD}$•$\overrightarrow{AE}$=4,則BC的長(zhǎng)度為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案