【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最小值和最大值;
(2)當時,討論函數(shù)的單調(diào)性.
【答案】(1)最小值是,最大值是;(2)見解析
【解析】
(1)易得在遞減,在遞增,所以,再比較的大小可得最大值;
(2),分,,,四種情況討論即可.
(1)時,,
,
令,解得:,
令,解得:,
∴在單調(diào)遞減,在單調(diào)遞增,
∴的最小值是,
而,,因為
故在的最大值是;
(2),
①時,易知在上單調(diào)遞增,在上單調(diào)遞減;
②當時,
若,,,,,,
所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;
③當時,,,在上單調(diào)遞增;
③當時,,,,,,
,所以在上單調(diào)遞增,在上單調(diào)遞減,
在上單調(diào)遞增
綜上所述,時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;
當時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;
當時,單調(diào)增區(qū)間為,無單調(diào)減區(qū)間;
當時,單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
科目:高中數(shù)學 來源: 題型:
【題目】在四面體ABCD中,與都是邊長為8的正三角形,點O是線段BC的中點.
(1)證明:.
(2)若為銳角,且四面體ABCD的體積為求側(cè)面ACD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列是的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.
(1)直接寫出,,,的值;
(2)當時,試用,表示,并說明理由;
(3)試用數(shù)學歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知y對x呈線性相關(guān)關(guān)系.
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)a,b;
(3)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,D是AC的中點,四邊形BDEF是菱形,平面平面ABC,,,.
若點M是線段BF的中點,證明:平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:,不過坐標原點的直線交于,兩點.
(Ⅰ)若,證明:直線過定點;
(Ⅱ)設(shè)過且與相切的直線為,過且與相切的直線為.當與交于點時,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線和是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列命題正確的是( )
A. 與都不相交 B. 與都相交
C. 至多與中的一條相交 D. 至少與中的一條相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)在內(nèi)只取到一個最大值和一個最小值,且當時,;當時,.
(1)求函數(shù)的解析式.
(2)求函數(shù)的單調(diào)遞增區(qū)間.
(3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com