下列命題正確的個(gè)數(shù)是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量
a
b
的夾角是鈍角”的充分必要條件是“
a
b
<0”.
A、1B、2C、3D、4
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:(1)根據(jù)特稱命題的否定是全稱命題來判斷是否正確;
(2)化簡(jiǎn)三角函數(shù),利用三角函數(shù)的最小正周期判斷;
(3)用特例法驗(yàn)證(3)是否正確;
(4)根據(jù)向量夾角為π時(shí),向量的數(shù)量積小于0,來判斷(4)是否正確.
解答: 解:(1)根據(jù)特稱命題的否定是全稱命題,
∴(1)正確;
(2)f(x)=cos2ax-sin2ax=cos2ax,最小正周期是
2|a|
=π⇒a=±1,
∴(2)正確;
(3)例a=2時(shí),x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2xmax=4,
∴(3)不正確;
(4)∵
a
b
=|
a
||
b
|cosθ
,當(dāng)θ=π時(shí),
a
b
<0.
∴(4)錯(cuò)誤.
∴正確的命題是(1)(2).
故選:B
點(diǎn)評(píng):本題借助考查命題的真假判斷,考查命題的否定、向量的數(shù)量積公式、三角函數(shù)的最小正周期及恒成立問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
y≤x
2x-y≤8
2x+y≥3
,則目標(biāo)函數(shù)z=6x-2y的最大值為( 。
A、32B、4C、8D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為超重機(jī)裝置示意圖,支桿BC=10m,吊桿AC=15cm,吊索AB=5
19
cm,那么起吊的貨物與岸的距離AD為( 。
A、30m
B、
15
2
3
m
C、15
3
m
D、45m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷錯(cuò)誤的是( 。
A、“am2<bm2”是“a<b”的充分不必要條件
B、若p,q均為假命題,則p且q為假命題
C、命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
D、若ξ~B(4,0.25),則Dξ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四種敘述能稱為算法的是( 。
A、在家里一般是媽媽做飯
B、做米飯需要刷鍋、淘米、添水、加熱這些步驟
C、在野外做飯叫野炊
D、做飯必須要有米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x為實(shí)數(shù),條件p:x2<x,條件q:
1
x
>2,則p是q的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
(1+i)2
1-i
的虛部為(  )
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=2x;②f(x)=x2+1;③f(x)=cosx;④f(x)=
x
x2-x+3
.其中是“倍約束函數(shù)”的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
1+ax2
,其中a為實(shí)數(shù),常數(shù)e=2.718….
(1)若x=
1
3
是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)當(dāng)a取正實(shí)數(shù)時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=-4時(shí),直接寫出函數(shù)f(x)的所有減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案