設函數(shù)f0(x)=x2ex,f1(x)=f0(x),f2(x)=f1(x),…,fn+1(x)=fn(x),n∈N+
(I)求f1(x),f2(x),f3(x),f4(x)的表達式;
(II)猜想fn(x)的表達式,并用數(shù)學歸納法證明.
分析:(I)由函數(shù)f0(x)=x2ex,利用導數(shù)的性質(zhì),能夠依次求出f1(x),f2(x),f3(x),f4(x)的表達式.
(II)由f0(x)=x2ex,f1(x)=(x2+2x)ex,f2(x)=(x2+4x+2)ex,f3(x)=(x2+6x+6)ex,f4(x)=(x2+8x+12)ex,猜想fn(x)=[x2+2nx+n(n-1)]ex.再用數(shù)學歸納法證明.
解答:解:(I)∵函數(shù)f0(x)=x2ex,
f1(x)=f0(x)=2xex+x2ex=(x2+2x)ex,
f2(x)=f1(x)=(2+2x)ex+(2x+x2)ex=(x2+4x+2)ex,
f3(x)=f2(x)=(2x+4)ex+(x2+4x+2)ex=(x2+6x+6)ex,
f4(x)=f3(x)=(2x+6)ex+(x2+6x+6)ex=(x2+8x+12)ex
(II)∵f0(x)=x2ex,
f1(x)=(x2+2x)ex,
f2(x)=(x2+4x+2)ex,
f3(x)=(x2+6x+6)ex,
f4(x)=(x2+8x+12)ex,
∴猜想fn(x)=[x2+2nx+n(n-1)]ex
下面用數(shù)學歸納法證明:
①n=1時,f1(x)=[x2+(2×1)x+1×(1-1)]ex=(x2+2x)ex,成立;
②假設n=k時,成立,
fk(x)=[x2+2kx+k(k-1)]ex,
則當n=k+1時,
fk+1(x)=fk(x)=(2x+2k)ex+[x2+2kx+k(k-1)]ex
=[x2+2(k+1)x+k(k+1)]ex,也成立,
由①②,得fn(x)=[x2+2nx+n(n-1)]ex
點評:本題考查導數(shù)的應用和數(shù)學歸納法的證明,是基礎題.解題時要認真審題,仔細解答,認真分析,注意總結(jié),合理地進行猜想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f0(x)=|x|,f1(x)=|f0(x)-1|,f2(x)=|f1(x)-2|,則函數(shù)f2(x)的圖象與x軸所圍成圖形中的封閉部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)設函數(shù)f0(x)=1-x2,f1(x)=|f0(x)-
1
2
|
fn(x)=|fn-1(x)-
1
2n
|
,(n≥1,n∈N),則方程f1(x)=
1
3
4
4
個實數(shù)根,方程fn(x)=(
1
3
)n
2n+1
2n+1
個實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)設函數(shù)f0(x)=x2e-
12
x
,記f0(x)的導函數(shù)f'0(x)=f1(x),f1(x)的導函數(shù)f'1(x)=f2(x),f2(x)的導函數(shù)f'2(x)=f3(x),…,fn-1(x)的導函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:江門二模 題型:解答題

設函數(shù)f0(x)=x2e-
1
2
x
,記f0(x)的導函數(shù)f'0(x)=f1(x),f1(x)的導函數(shù)f'1(x)=f2(x),f2(x)的導函數(shù)f'2(x)=f3(x),…,fn-1(x)的導函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案