【題目】下列說法正確的是( )
A.二進制數11010(2)化為八進制數為42(8)
B.若扇形圓心角為2弧度,且扇形弧所對的弦長為2,則這個扇形的面積為
C.用秦九韶算法計算多項式f(x)=3x6+5x4+6x3﹣4x﹣5當x=3時的值時,v1=3v0+5=32
D.正切函數在定義域內為單調增函數
【答案】B
【解析】解:A.二進制數11010(2)=1×24+1×23+0×22+1×21+0×20=26.
∵26÷8=3…2
3÷8=0…3
∴26(10)=32(8)故A錯誤,
B.如圖:設∠AOB=2,AB=2,過點0作OC⊥AB,C為垂足,
并延長OC交 于D,則∠AOD=∠BOD=1,AC= AB=1.
Rt△AOC中,r=AO= = ,
從而弧長為l=αr=2× = ,
則這個扇形的面積為S= = ,故B正確,
C.由秦九韶算法可得f(x)=(((((3x+5)x+6)x+0)x﹣4)x﹣5),
當x=3時,可得v0=3,v1=2﹣12=﹣10,v2=﹣10×2+60=40,v3=40×2﹣160=﹣80.
v0=a6=3,v1=v0x+a5=3×3+5=14,故C錯誤,
D.正切函數在每一個區(qū)間內(kπ﹣ ,kπ+﹣ )為單調增函數,但在定義域內不是單調函數,故D錯誤,
故選:B
【考點精析】利用命題的真假判斷與應用對題目進行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數學 來源: 題型:
【題目】已知A(3,5),B(-1,3),C(-3,1)為△ABC的三個頂點,O、M、N分別為邊AB、BC、CA的中點,求△OMN的外接圓的方程,并求這個圓的圓心和半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【河南省2017屆高中畢業(yè)年級考前預測數學(理)】已知圓與直線相切,設點為圓上一動點, 軸于,且動點滿足,設動點的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2015江蘇高考,18】如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且右焦點F到左準線l的距離為3.
(1)求橢圓的標準方程;
(2)過F的直線與橢圓交于A,B兩點,線段AB的垂直平分線分別交直線l和AB于點P,C,若PC=2AB,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)擬建立一個藝術博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現從建筑設計院聘請專家設計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩家公司共答對道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在D上的函數,若存在區(qū)間[m,n]D及正實數k,使函數f(x)在[m,n]上的值域恰為[km,kn],則稱函數f(x)是k型函數.給出下列說法:
①f(x)=3﹣ 不可能是k型函數;
②若函數f(x)= (a≠0)是1型函數,則n﹣m的最大值為 ;
③若函數f(x)=﹣ x2+x是3型函數,則m=﹣4,n=0.
其中正確說法個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相鄰兩條對稱軸間的距離不小于
(1)求ω的取值范圍及函數f(x)的單調遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a= ,b+c=3,當ω最大時,f(A)=1,求sinBsinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補貼,每戶貸款額為萬元,貸款期限有個月、個月、個月、個月、個月五種,這五種貸款期限政府分別需要補助元、元、元、元、元,從年享受此項政策的困難戶中抽取了戶進行了調查統計,選取貸款期限的頻數如下表:
貸款期限 | 個月 | 個月 | 個月 | 個月 | 個月 |
頻數 |
以商標各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)年共有戶準備享受此項政策,計算其中恰有兩戶選擇貸款期限為個月的概率;
(2)設給享受此項政策的某困難戶補貼為元,寫出的分布列,若預計年全市有萬戶享受此項政策,估計年該市共要補貼多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com