【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若對于任意的,若函數(shù)在區(qū)間上有最值,求實(shí)數(shù)的取值范圍.

【答案】1)當(dāng)時(shí), 無極值,當(dāng)時(shí), 有極大值,無極小值;(2.

【解析】試題分析:(1)對求導(dǎo), ,分, 兩種情況寫出函數(shù)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo)得,根據(jù)在區(qū)間上有最值,得到在區(qū)間上總不是單調(diào)函數(shù),從而得到,,另由對任意, 恒成立,分離參數(shù)即可求得實(shí)數(shù)的取值范圍.

試題解析:(1)由已知得的定義域?yàn)?/span>,且

當(dāng)時(shí), ,

單調(diào)增, 無極值;

當(dāng)時(shí),

得: ,則得: ,

上單調(diào)遞增,在上單調(diào)遞減.

的極大值,無極小值.

綜上:當(dāng)時(shí), 無極值;

當(dāng)時(shí), 有極大值,無極小值.

2,

在區(qū)間上有最值,

在區(qū)間上有極值,即方程上有一個(gè)或兩個(gè)不等實(shí)根,

,

則題意知:對任意恒成立,

,因?yàn)?/span>,

對任意, 恒成立

,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是

; ②;

; ④

A. ②③ B. ①③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)當(dāng)有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn
(1)求{an}的通項(xiàng)公式;
(2)求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性 ;

(2)若對任意恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),若函數(shù)有兩個(gè)極值點(diǎn),求

的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足(x-a)(x-3a)<0,其中a0,命題q:實(shí)數(shù)x滿足(x-3)(x-2≤0

1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.

2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(x)=f(2﹣x),若函數(shù)y=|x2﹣2x﹣3|與 y=f(x) 圖象的交點(diǎn)為(x1 , y1),(x2 , y2),…,(xm , ym),則 xi=( 。
A.
B.m
C.2m
D.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)已知半徑為的圓的圓心M在軸上,圓心M的橫坐標(biāo)是整數(shù),且圓M與直線相切.

求:()求圓M的方程;

)設(shè)直線與圓M相交于兩點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

同步練習(xí)冊答案