【題目】平面直角坐標(biāo)系xOy中,A(2,4),B(﹣1,2),C,D為動(dòng)點(diǎn),
(1)若C(3,1),求平行四邊形ABCD的兩條對(duì)角線的長(zhǎng)度
(2)若C(a,b),且 ,求 取得最小值時(shí)a,b的值.
【答案】
(1)解: =(1,﹣3), =(3,2).
= = .
由平行四邊形的性質(zhì)可得: = ,可得 = + =(6,3).
∴ =(7,1),可得: = =5
(2)解:C(a,b),且 ,∴ = +(3,1)=(a+3,b+1).
∴ =(a+4,b﹣1).
=(a﹣2,b﹣4).
∴ =(a﹣2)(a+4)+(b﹣4)(b﹣1)=a2+2a﹣8+b2﹣5b+4
=(a+1)2+ ﹣ ≥ ,當(dāng)且僅當(dāng)a=﹣1,b= 時(shí)取等號(hào)
【解析】(1) =(1,﹣3), =(3,2).可得 .由平行四邊形的性質(zhì)可得: = ,可得 = + .可得 .(2)C(a,b),且 ,可得 = +(3,1),可得 =(a+4,b﹣1). =(a﹣2,b﹣4).利用數(shù)量積運(yùn)算性質(zhì)、二次函數(shù)的單調(diào)性即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|log0.5x|,若正實(shí)數(shù)m,n(m<n)滿(mǎn)足f(m)=f(n),且f(x)在區(qū)間[m2 , n]上的最大值為4,則n﹣m=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有4張卡片,每張卡片上寫(xiě)有1個(gè)數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(1)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于8的概率;
(2)若隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字3的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“奶茶妹妹”對(duì)某時(shí)間段的奶茶銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)x元和銷(xiāo)售量y杯之間的一組數(shù)據(jù)如下表所示:
價(jià)格x | 5 | 5.5 | 6.5 | 7 |
銷(xiāo)售量y | 12 | 10 | 6 | 4 |
通過(guò)分析,發(fā)現(xiàn)銷(xiāo)售量y對(duì)奶茶的價(jià)格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷(xiāo)售量y對(duì)奶茶的價(jià)格x的回歸直線方程;
(Ⅱ)欲使銷(xiāo)售量為13杯,則價(jià)格應(yīng)定為多少?
注:在回歸直線y= 中, , = ﹣ . =146.5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+1 (I)求證數(shù)列{an+1}是等比數(shù)列;
(II)設(shè)cn=n(an+1),求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當(dāng)a=4時(shí),解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時(shí),求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在某城市的某校高中生中,從男生中隨機(jī)抽取了70人,從女生中隨機(jī)抽取了50人,男生中喜歡數(shù)學(xué)課程的占,女生中喜歡數(shù)學(xué)課程的占,得到如下列聯(lián)表.
喜歡數(shù)學(xué)課程 | 不喜歡數(shù)學(xué)課程 | 合計(jì) | ||||||||
男生 | ||||||||||
女生 | ||||||||||
合計(jì) | ||||||||||
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | ||||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | ||||
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;試判斷能否有90%的把握認(rèn)為喜歡數(shù)學(xué)課程與否與性別有關(guān);
(2)從不喜歡數(shù)學(xué)課程的學(xué)生中采用分層抽樣的方法,隨機(jī)抽取6人,現(xiàn)從6人中隨機(jī)抽取2人,若所選2名學(xué)生中的女生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿(mǎn)足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿(mǎn)足bn=3﹣2log2an .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若λ>0,求對(duì)所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+1)在(0,+∞)上單調(diào)遞減;q:曲線y=x2+(2a﹣3)x+1與x軸交于不同的兩點(diǎn).如果p且q為假命題,p或q為真命題,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com