已知△ABC中,a,b,c分別是角A,B,C的對(duì)邊,cosA=
1
3

(1)求sin(2A+
π
6
)
;
(2)若a=4,
sinB
sinC
=
1
3
,求b,c及△ABC的面積S.
分析:(1)利用同角三角函數(shù)的基本關(guān)系求得 sinA 的值,利用二倍角公式求得sin2A,再利用兩角和差的正弦公式求得sin(2A+
π
6
)
的值.
(2)由條件里哦也難怪正弦定理可得 c=3b,再由余弦定理求得b、c的值,從而求得△ABC的面積S=
1
2
•bc•sinA 的值.
解答:解:(1)△ABC中,∵cosA=
1
3
,∴sinA=
2
2
3
,∴sin2A=2sinAcosA=
4
2
9
,cos2A=2cos2A-1=-
7
9

sin(2A+
π
6
)
=sin2Acos
π
6
+cos2Asin
π
6
=
4
6
-7
9

(2)若a=4,
sinB
sinC
=
1
3
,則由正弦定理可得
b
c
=
1
3
,∴c=3b.
再由余弦定理可得 a2=16=b2+c2-2bc•cosA=b2+9b2-2b2=8b2,解得b=
2
,∴c=3
2
,
故△ABC的面積S=
1
2
•bc•sinA=2
2
點(diǎn)評(píng):本題主要考查兩角和差的正弦公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,以及正弦定理、余弦定理、二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長(zhǎng)c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案