【題目】已知數(shù)列,其前項和為.
(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求;
(2)若數(shù)列是公比為()的等比數(shù)列, 為常數(shù),
求證:數(shù)列為等比數(shù)列的充要條件為.
【答案】(1);(2)證明見解析.
【解析】試題分析:(1)根據(jù)題意,可求得, (),從而得, , ,……, , 是公差為4的等差數(shù)列,且,于是可求;
(2)由 ,可求得,,兩式相減得,若,可證得數(shù)列為等比數(shù)列,(充分性);若數(shù)列為等比數(shù)列,可證得,(必要性).
試題解析:(1)因為, , 成公差為4的等差數(shù)列,
所以, (),
所以, , ,……, , 是公差為4的等差數(shù)列,且
,
又因為,所以
(2)因為,所以,①
所以,②
②-①,得,③
(i)充分性:因為,所以, , ,代入③式,得
,因為,又,
所以, ,所以為等比數(shù)列,
(ii)必要性:設(shè)的公比為,則由③得,
整理得,
此式為關(guān)于的恒等式,若,則左邊=0,右邊=-1,矛盾:
若,當(dāng)且僅當(dāng)時成立,所以.
由(i)、(ii)可知,數(shù)列為等比數(shù)列的充要條件.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以 (單位: )表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計利潤不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線L經(jīng)過點P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線L的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)曲線在處的切線為,當(dāng)時,求直線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”已成為當(dāng)下熱門的運動方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù) 性別 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若對任意的a∈(﹣3,+∞),關(guān)于x的方程f(x)=kx都有3個不同的根,則k等于( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,其前項和為.
(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求;
(2)若數(shù)列是公比為()的等比數(shù)列, 為常數(shù),
求證:數(shù)列為等比數(shù)列的充要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙等五名奧運志愿者被隨機地分到A,B,C,D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個崗位服務(wù)的概率;
(3)設(shè)隨機變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解小學(xué)生的體能情況,抽取了某校一個年級的部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達(dá)標(biāo),試估計該年級學(xué)生跳繩測試的達(dá)標(biāo)率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com