中,角所對的邊分別為,且
(1)求函數(shù)的最大值;
(2)若,求的值.
(1);(2)

試題分析:
解題思路:(1)利用二倍角公式及其變形將化成的形式,再求最值;(2)利用正弦定理進行求解.
規(guī)律總結:(1)涉及三角函數(shù)的最值或求值問題,往往先根據(jù)三角函數(shù)恒等變形化為的形式,再利用三角函數(shù)的圖像與性質進行求解;(2)解三角形,要根據(jù)條件合理選擇正弦定理或余弦定理.
試題解析:(1)
         
,即當時,取得最大值,且最大值為 
(2)由題意得       
又由(1)知.
    
,得 
所以的值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分圖象如圖所示:
(1)求函數(shù)y=f(x)的解析式;(2)當x∈時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,函數(shù),且的圖像過點和點.
(1)求的值;
(2)將的圖像向左平移個單位后得到函數(shù)的圖像,若圖像上各最高點到點的距離的最小值為1,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1).求的周期和單調遞增區(qū)間;
(2).若關于x的方程上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

化簡等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

關于函數(shù)f(x)=4sin(2x+), (x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
② y=f(x)可改寫為y=4cos(2x-);
③y=f(x)的圖象關于(-,0)對稱;
④ y=f(x)的圖象關于直線x=-對稱;
其中正確的序號為                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

己知函數(shù)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則的值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的值域為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)的圖象向左平移個單位,得到函數(shù)的圖象,若的圖象關于原點對稱,則的值是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案