【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n2﹣30n.
(1)求a1及an
(2)判斷這個數(shù)列是否是等差數(shù)列.

【答案】
(1)解:由Sn=2n2﹣30n,得 ,

當(dāng)n≥2時(shí),an=Sn﹣Sn1=2n2﹣30n﹣[2(n﹣1)2﹣30(n﹣1)]=4n﹣32.

驗(yàn)證n=1上式成立,

∴an=4n﹣32


(2)解:由an=4n﹣32,得an1=4(n﹣1)﹣32(n≥2),

∴an﹣an1=4n﹣32﹣[4(n﹣1)﹣32]=4(常數(shù)),

∴數(shù)列{an}是等差數(shù)列


【解析】(1)在數(shù)列的前n項(xiàng)和中,取n=1求得a1 , 再由an=Sn﹣Sn1(n≥2)求得an;(2)由(1)中求得的通項(xiàng)公式,利用定義判斷數(shù)列是等差數(shù)列.
【考點(diǎn)精析】本題主要考查了等差關(guān)系的確定的相關(guān)知識點(diǎn),需要掌握如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),即=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標(biāo)準(zhǔn)用水量不超過a的部分按照平價(jià)收費(fèi),超過a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.

(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請?jiān)趫D中將其補(bǔ)充完整;
(2)用樣本估計(jì)總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計(jì)該100位居民月均用水量的眾數(shù),中位數(shù),平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, , 為棱的中點(diǎn).

(Ⅰ)探究直線與平面的位置關(guān)系,并說明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省環(huán)保研究所對某市市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻 (時(shí))的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且,若用每天的最大值為當(dāng)天的綜合放射性污染指數(shù),并記作.

(1)令.求的取值范圍;

(2)求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前該市市中心的綜合放射性污染指數(shù)是否超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用0、1、2、3、4這五個數(shù)字,可以組成多少個滿足下列條件的沒有重復(fù)數(shù)字的五位數(shù)?
(1)奇數(shù);
(2)比21034大的偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市環(huán)保局舉辦2013年“六五”世界環(huán)境日宣傳活動,進(jìn)行現(xiàn)場抽獎.抽獎規(guī)則是:盒中裝有10張大小相同的精美卡片,卡片上分別印有“環(huán)保會徽”或“綠色環(huán)保標(biāo)志”圖案.參加者每次從盒中抽取卡片兩張,若抽到兩張都是“綠色環(huán)保標(biāo)志”卡即可獲獎.
(1)活動開始后,一位參加者問:盒中有幾張“綠色環(huán)保標(biāo)志”卡?主持人笑說:我只知道若從盒中抽兩張都不是“綠色環(huán)保標(biāo)志”卡的概率是 .求抽獎?wù)攉@獎的概率;
(2)現(xiàn)有甲乙丙丁四人依次抽獎,抽后放回,另一人再抽.用ξ表示獲獎的人數(shù).求ξ的分布列及E(ξ),D(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)(1)已知命題p:|x2﹣x|≥6,q:x∈Z且“p且q”與“非q”同時(shí)為假命題,求x的值.
(2)已知p:x2﹣8x﹣20≤0,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的菱形中, ,點(diǎn)分別是的中點(diǎn), ,沿翻折到,連接,得到如圖的五棱錐,且

(1)求證: 平面(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案