已知命題使得命題,下列命題為真的是

A.pq             B.(        C.      D.

 

【答案】

A

【解析】

試題分析:對于命題:當(dāng),則,所以命題是真命題,則是假命題,對于,,所以不等式解集為,所以

命題是真命題,命題是假命題,所以為真命題,選A.

考點(diǎn):復(fù)合命題的真假

點(diǎn)評:本題借助不等式知識考查命題真假性,關(guān)鍵是判斷已知不等式是否成立,屬基礎(chǔ)題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)(2,2
2
)
在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請寫出推廣命題,并給予證明.
說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分

已知拋物線方程為.

(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)的坐標(biāo)和準(zhǔn)線的方程;

(2)在(1)的條件下,若過焦點(diǎn)且傾斜角為的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,直線、、的斜率分別記為、、,求證:、、成等差數(shù)列;

(3)對(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請寫出推廣命題,并給予證明.

說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分

已知拋物線方程為.

(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)的坐標(biāo)和準(zhǔn)線的方程;

(2)在(1)的條件下,若過焦點(diǎn)且傾斜角為的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,直線、、的斜率分別記為、、,求證:、、成等差數(shù)列;

(3)對(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請寫出推廣命題,并給予證明.

說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市松江區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請寫出推廣命題,并給予證明.
說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市松江區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知拋物線方程為y2=2px(p>0).
(1)若點(diǎn)在拋物線上,求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線l的方程;
(2)在(1)的條件下,若過焦點(diǎn)F且傾斜角為60°的直線m交拋物線于A、B兩點(diǎn),點(diǎn)M在拋物線的準(zhǔn)線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數(shù)列;
(3)對(2)中的結(jié)論加以推廣,使得(2)中的結(jié)論成為推廣后命題的特例,請寫出推廣命題,并給予證明.
說明:第(3)題將根據(jù)結(jié)論的一般性程度給予不同的評分.

查看答案和解析>>

同步練習(xí)冊答案