設函數(shù)數(shù)學公式,其中[x]表示不超過x的最大整數(shù),如[-1.2]=-2,[1.2]=1,[1]=1,若直線y=kx+k(k>0)與函數(shù)y=f(x)的圖象恰有三個不同的交點,則k的取值范圍是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:畫圖可知f(x)就是周期為1的函數(shù),且在[0,1)上是一直線y=x的對應部分的含左端點,不包右端點的線段,要有三解,只需直線y=kx+k過點(3,1)與直線y=kx+k過點(2,1)之間即可.
解答:∵函數(shù),∴函數(shù)的圖象如下圖所示:

∵y=kx+k=k(x+1),故函數(shù)圖象一定過(-1,0)點
若f(x)=kx+k有三個不同的根,則y=kx+k與y=f(x)的圖象有三個交點
當y=kx+k過(2,1)點時,k=,當y=kx+k過(3,1)點時,k=,
故f(x)=kx+k有三個不同的根,則實數(shù)k的取值范圍是
故選D
點評:本題考查的知識點是根據(jù)根的存在性及根的個數(shù)的判斷,其中將方程的根轉化為函數(shù)的零點,然后利用圖象法分析函數(shù)圖象交點與k的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設y=f(x)是某港口水的深度y(米)關于時間t(時)的函數(shù),其中0≤t≤24,下表是該港口某一天從0時至24時記錄的時間t與水深y的關系:
t 0 3 6 9 12 15 18 21 24
y 12 15.1 12.1 9.1 11.9 14.9 11.9 8.9 12.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象,下面的函數(shù)中,最能近似表示表中數(shù)據(jù)間對應關系的函數(shù)是(t∈[0,24])( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•棗莊一模)設y=f(t)是某港口水的深度y(米)關于時間t(時)的函數(shù),其中0≤t≤24.下表是該港口某一天從0時至24時記錄的時間t與水深y的關系:
t 0 3 6 9 12 15 18 21 24
y 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=h+Asin(ωx+?)的圖象.最能近似表示表中數(shù)據(jù)間對應關系的函數(shù)是
y=5.0+2.5sin
π
6
t
y=5.0+2.5sin
π
6
t

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ) 求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)數(shù)學公式(其中x>0),設該數(shù)表的第n行的所有數(shù)之和為bn
數(shù)列{f(bn)}的前n項和為Tn,求證數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年山東省日照市六所高中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)(其中x>0),設該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項和為Tn,求證

查看答案和解析>>

同步練習冊答案