設(shè)點A是直線l∶2x-y+4=0與x軸的交點, 把直線繞點A逆時針方向旋轉(zhuǎn)45°得的直線方程是

[  ]

A. x+y-2=0             B. x-3y-2=0

C. 3x+y+6=0            D. 3x-y+6=0

答案:C
解析:

解: ∵=tan45°=1

    ∴ k=-3

    所求方程為 y=-3(x+2)

    即 3x+y+6=0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).
(1)求P點的坐標(biāo);
(2)求以F1、F2為焦點且過點P的橢圓C的方程;
(3)設(shè)點Q是橢圓C上除長軸兩端點外的任意一點,試問在x軸上是否存在兩定點A、B,使得直線QA、QB的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點A、B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y2=2x,焦點為F,
(1)若C的準(zhǔn)線與x軸的交點為D,過D的直線l與C交于A,B兩點,且|
.
FA
|=2|
.
FB
|,求直線l的斜率;
(2)設(shè)點P是C上的動點,點R,N在y軸上,圓M:(x-1)2+y2=1內(nèi)切于△PRN,求△PRN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市海安縣曲塘中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).
(1)求P點的坐標(biāo);
(2)求以F1、F2為焦點且過點P的橢圓C的方程;
(3)設(shè)點Q是橢圓C上除長軸兩端點外的任意一點,試問在x軸上是否存在兩定點A、B,使得直線QA、QB的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點A、B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案