【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商定購,決定當(dāng)一次定購量超過100件時,每多定購一件,訂購的全部零件的出廠單價就降低0.02元.根據(jù)市場調(diào)查,銷售商一次定購量不會超過500件.

(1)設(shè)一次定購量為x件,服裝的實際出廠總價為P元,寫出函數(shù)P=f(x)的表達(dá)式;

(2)當(dāng)銷售商一次定購了450件服裝時,該服裝廠獲得的利潤是多少元?

(服裝廠售出一件服裝的利潤=實際出廠價格-成本)

【答案】(1);(2)5850元.

【解析】1)由題意可知:(函數(shù)定義域中無2分)

….8

2∵x=450,∴P=620.02×450=53()∴450×(5340)=5850()…….13

答:(1)函數(shù)

2)當(dāng)銷售商一次定購了450件服裝時,該服裝廠獲得利潤為5850元.……15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)

的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,就會造成堵塞,此時車流速度為0;當(dāng)

車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,

車流速度是車流密度的一次函數(shù).

(1)當(dāng)時,求函數(shù)的表達(dá)式;

(2)如果車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù)) (單位:輛/小時),那么當(dāng)車流密度為多大時,車流量可以達(dá)到最大,并求出最大值.(精確到輛/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,已知2cos(B﹣C)﹣1=4cosBcosC.
(1)求A;
(2)若a= ,△ABC的面積為 ,求b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù) ),給出以下四個論斷:

的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點對稱;④的圖象關(guān)于直線對稱.以其中兩個論斷作為條件,另兩個論斷作為結(jié)論,寫出你認(rèn)為正確的一個命題(寫成“”的形式)__________.(其中用到的論斷都用序號表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).

(1)求實數(shù)的值;

(2)當(dāng)=1時,判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;

(3)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801﹣2015《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累積凈化量(CCM)有如下等級劃分:

累積凈化量(克)

(3,5]

(5,8]

(8,12]

12以上

等級

P1

P2

P3

P4

為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機抽取n臺機器作為樣本進(jìn)行估計,已知這n臺機器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.

(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為P2的空氣凈化器有多少臺?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機抽取2臺,求恰好有1臺等級為P2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集X={x1,x2,xn}(其中xi>0,i=1,2,…,n,n≥3),若對任意的xk∈X(k=1,2,…,n),都存在xi,xj∈Xxi≠xj),使得下列三組向量中恰有一組共線:

①向量(xi,xk)與向量(xkxj);②向量(xi,xj)與向量(xj,xk);③向量(xk,xi)與向量(xi,xj),則稱X具有性質(zhì)P。例如{1,2,4}具有性質(zhì)P。

(1)若{1,3,x)具有性質(zhì)P,則x的取值為________

(2)若數(shù)集{1,3,x1,x2}具有性質(zhì)P,則x1+x2的最大值與最小值之積為________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)f(x)中,滿足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

查看答案和解析>>

同步練習(xí)冊答案