已知函數(shù)在處取得極值,求函數(shù)以及的極大值和極小值.
在處取得極大值,在處取得極小值.
解析試題分析:先求出導(dǎo)函數(shù),進(jìn)而根據(jù)條件得出,列出方程組,從中解出的值,進(jìn)而根據(jù)函數(shù)的極值與導(dǎo)數(shù)的關(guān)系求解出函數(shù)的極大值與極小值即可.
試題解析:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/b/1uxsa4.png" style="vertical-align:middle;" />,所以
因?yàn)楹瘮?shù)在處取得極值
所以
即
∴,
令,得或
當(dāng)變化時(shí),與的變化情況如下表:1 + 0 — 0 + ↗ 極大值 ↘ 極小值 ↗
∴在處取得極大值,在處取得極小值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時(shí)成立,求實(shí)數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實(shí)數(shù)的值;
(3)設(shè)有兩個(gè)極值點(diǎn)、(),求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在與處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對(duì)任意的,總存在,使得、,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè) 圓與軸正半軸的交點(diǎn)為,與曲線的交點(diǎn)為,直線與軸的交點(diǎn)為.
(1)用表示和
(2)若數(shù)列滿足
(1)求常數(shù)的值,使得數(shù)列成等比數(shù)列;
(2)比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處
的切線斜率為-1.
(I)求的值及函數(shù)的極值;
(II)證明:當(dāng)時(shí),;
(III)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng),恒有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com