11.如圖,某農(nóng)戶計劃在自家后院,背靠院墻用籬笆圍出一塊約8m2的矩形空地用來養(yǎng)雞,所需籬笆總長度最小為8m.

分析 設(shè)矩形的長為:x,寬為:y,則xy=8,且x>0,y>0,籬笆總長度為L=x+2y利用基本不等式求解即可.

解答 解:設(shè)矩形的長為:x,寬為:y,則xy=8,且x>0,y>0,籬笆總長度為L=x+2y≥2$\sqrt{2xy}$=8,當(dāng)且僅當(dāng)x=2y=4時取等號;籬笆總長度最小為:8m.
故答案為:8.

點評 本題考查函數(shù)的實際問題的應(yīng)用,基本不等式在最值中的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖示,邊長為4的正方形ABCD與正三角形ADP所在平面互相垂直,M、Q分別是PC,AD的中點.
(1)求證:PA∥面BDM
(2)求多面體P-ABCD的體積
(3)試問:在線段AB上是否存在一點N,使面PCN⊥面PQB?若存在,指出N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個簡單幾何體的正視圖、側(cè)視圖如圖所示,則其俯視圖不可能為:
①長方形;
②正方形;
③圓.
其中正確的是(  )
A.①②B.②③C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)y=f(x)是定義在R上的偶函數(shù),且f(1+x)=f(1-x),當(dāng)0≤x≤1時,f(x)=2-x,則f(3)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(cosα,-1),$\overrightarrow{n}$=(2,sinα),其中$α∈(0,\frac{π}{2})$,且$\overrightarrow{m}⊥\overrightarrow{n}$.
(1)求cos2α的值;
(2)若sin(α-β)=$\frac{\sqrt{10}}{10}$,且$β∈(0,\frac{π}{2})$,求角β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC中,點D為BC中點,AB=2,AC=4.
(1)若B=$\frac{π}{3}$,求sinA;
(2)若AD=$\sqrt{3}$,求BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若f(x)=x3-3x+m有三個零點,則實數(shù)m的取值范圍是-2<m<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=({a-1})lnx-\frac{a}{2}{x^2}+x({a∈R}),g(x)=-\frac{1}{3}{x^3}-x+({a-1})lnx$.
(1)若$a≤\frac{1}{2}$,討論f(x)的單調(diào)性;
(2)若過點$({0,-\frac{1}{3}})$可做函數(shù)y=g(x)-f(x)(x>0)圖象的兩條不同切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={1,3,$\sqrt{m}$},B={1,m},A∩B={1,m},則m=( 。
A.0或$\sqrt{3}$B.0或3C.1或3D.1或3或0

查看答案和解析>>

同步練習(xí)冊答案