【題目】是定義在上且滿(mǎn)足如下條件的函數(shù)組成的集合:①對(duì)任意的,都有②存在常數(shù)使得對(duì)任意的,都有.

1)設(shè)問(wèn)是否屬于?說(shuō)明理由;

2)若如果存在使得證明:這樣的是唯一的;

3)設(shè)試求的取值范圍.

【答案】(1)函數(shù)屬于,理由見(jiàn)解析;(2)證明見(jiàn)解析;(3)

【解析】

1)計(jì)算出的值域,并判斷出對(duì)任意的,都有,從而證明;(2)假設(shè)存在不同的兩個(gè)數(shù),,得到,與矛盾,從而證明.(3)由得到,由,整理后得到,從而得到,求出的范圍.

(1)易知的值域?yàn)?/span>

對(duì)任意的,都有

故函數(shù)屬于

(2)假設(shè)存在不同的兩個(gè)數(shù),使得,

因?yàn)?/span>,所以

因?yàn)?/span>,所以,所以

矛盾.

所以滿(mǎn)足是唯一的.

3)因?yàn)?/span>,故,解得.

且對(duì)任意,

都有

.

所以,對(duì)任意恒成立,

所以,解得

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1若關(guān)于的方程上恒成立,求的值;

2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線(xiàn).

(1)寫(xiě)出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線(xiàn)的極坐標(biāo)方程為, 為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中, , ,點(diǎn)上的動(dòng)點(diǎn).現(xiàn)將矩形沿著對(duì)角線(xiàn)折成二面角,使得

)求證:當(dāng)時(shí), ;

)試求的長(zhǎng),使得二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在區(qū)間上存在三個(gè)不同的實(shí)數(shù)使得以為邊長(zhǎng)的三角形是直角三角形,則的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)K(-1,0)為直線(xiàn)l與拋物線(xiàn)C準(zhǔn)線(xiàn)的交點(diǎn),直線(xiàn)l與拋物線(xiàn)C相交于A,B兩點(diǎn).

(1)求拋物線(xiàn)C的方程;

(2)設(shè)·,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù) (、為常數(shù)),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是

(1)、的值

(2)的最大值

(3)設(shè),證明:對(duì)任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若函數(shù)內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

同步練習(xí)冊(cè)答案