10.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,有下列四個(gè)命題:
①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若m∥α,m∥β,則α∥β.
其中正確命題的序號(hào)是②③.

分析 利用空間中線線、線面、面面間的位置關(guān)系求解.

解答 解:①若m?β,α⊥β,則m與α相交、平行或m?α,故①錯(cuò)誤;
②若α∥β,m?α,則由平面與平面平行的性質(zhì),得m∥β,故②正確;
③若n⊥α,n⊥β,m⊥α,
則由平面與平面垂直的判定定理和直線與平面垂直的判定定理,得m⊥β,故③正確;
④平行于同一條直線的兩個(gè)平面不一定平行,所以④錯(cuò)誤.
故答案為:②③.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( 。
A.y=1,y=$\frac{x}{x}$B.y=$\sqrt{x-2}$•$\sqrt{x+2}$,y=$\sqrt{{x}^{2}-4}$
C.y=x與y=logaax(a>0且a≠1)D.y=|x|,$y={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)$f(x)=\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}+tanθ$,其中$θ∈({\frac{π}{6}\;,\;\frac{π}{2}}]$,則f'(1)的取值范圍是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.集合{x|x2=1}的子集個(gè)數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下面是某個(gè)問(wèn)題的算法過(guò)程:
第一步,比較a與b的大小,若a<b,則交換a,b的值.
第二步,比較a與c的大小,若a<c,則交換a,c的值.
第三步,比較b與c的大小,若b<c,則交換b,c的值.
第四步,輸出a,b,c.
該算法結(jié)束后解決的問(wèn)題是( 。
A.輸入a,b,c三個(gè)數(shù),按從小到大的順序輸出
B.輸入a,b,c三個(gè)數(shù),按從大到小的順序輸出
C.輸入a,b,c三個(gè)數(shù),按輸入順序輸出
D.輸入a,b,c三個(gè)數(shù),無(wú)規(guī)律地輸出

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=xex-k(x∈R)恰有兩個(gè)零點(diǎn),其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,0)B.$(-\frac{1}{e},2{e^2})$C.(0,2e2D.$(-\frac{1}{e},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知{an}是等差數(shù)列,a1=2,a3=4,則a4+a5+a6=( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)滿足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,則f'(1)的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對(duì)任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為(  )
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案