【題目】某市高中全體學(xué)生參加某項(xiàng)測(cè)評(píng),按得分評(píng)為兩類(評(píng)定標(biāo)準(zhǔn)見表1).根據(jù)男女學(xué)生比例,使用分層抽樣的方法隨機(jī)抽取了10000名學(xué)生的得分?jǐn)?shù)據(jù),其中等級(jí)為的學(xué)生中有40%是男生,等級(jí)為的學(xué)生中有一半是女生.等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生,等級(jí)為的學(xué)生統(tǒng)稱為類學(xué)生.整理這10000名學(xué)生的得分?jǐn)?shù)據(jù),得到如圖2所示的頻率分布直方圖,

類別

得分(

表1

(I)已知該市高中學(xué)生共20萬人,試估計(jì)在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù);

(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機(jī)選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學(xué)生”的概率;

(Ⅲ)在這10000名學(xué)生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷的大小.(只需寫出結(jié)論)

【答案】(Ⅰ)8萬人;(Ⅱ) ;(Ⅲ)

【解析】試題分析:(I)根據(jù)直方圖可得樣本中類學(xué)生所占比例為,所以類學(xué)生所占比例為,再根據(jù)總?cè)藬?shù)可估計(jì)在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù);()利用列舉法列舉出按要求分成兩組,分組的方法數(shù)為,其中甲、乙兩組各有類學(xué)生的方法共有種,由古典概型概率公式可得結(jié)果;()根據(jù)直方圖,結(jié)合表格數(shù)據(jù)可得結(jié)論.

試題解析:(1)依題意得,樣本中類學(xué)生所占比例為,

所以類學(xué)生所占比例為 因?yàn)槿懈咧袑W(xué)生共萬人,

所以在該項(xiàng)測(cè)評(píng)中被評(píng)為類學(xué)生的人數(shù)約為8萬人.

2由表1得,在5人(記為)中, 類學(xué)生有2人(不妨設(shè)為).

將他們按要求分成兩組,分組的方法數(shù)為種.

依次為:

所以“甲、乙兩組各有一名類學(xué)生的概率為

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1討論的單調(diào)性;

(2)當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EA,D不重合)分別在棱ADBD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率,且過拋物線的焦點(diǎn).

1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn)已知, ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C ,圓 的圓心到直線的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線與圓相切,且與橢圓C相交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, .過的平面交于點(diǎn),交于點(diǎn).

(l)求證: 平面

(Ⅱ)求證: ;

(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,函數(shù)的極大值為,求實(shí)數(shù)的值;

(2)若對(duì)任意的, 上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列各項(xiàng)均為正數(shù), ,且對(duì)任意恒成立,記的前項(xiàng)和為.

(1)若,求的值;

(2)證明:對(duì)任意正實(shí)數(shù), 成等比數(shù)列;

(3)是否存在正實(shí)數(shù),使得數(shù)列為等比數(shù)列.若存在,求出此時(shí)的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 中, 所對(duì)的邊分別為,且.

(1)求角的大。

(2)若, 的中點(diǎn),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案