【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照 , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說(shuō)明理由.

【答案】12(3)

【解析】試題分析】(1)依據(jù)題設(shè)條件先求出,再借助三角變換公式及正弦函數(shù)的單調(diào)區(qū)間進(jìn)行求解;(2)先求三角形的內(nèi)角,再運(yùn)用正弦定理及三角變換公式求解:

(1)

(2)

(3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)為an , 前n項(xiàng)和為sn , 且an是sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式an , bn
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Bn , 試比較 與2的大。
(Ⅲ)設(shè)Tn= ,若對(duì)一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過(guò)點(diǎn)的圓心.

(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)作直線交圓兩點(diǎn),分別過(guò)兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點(diǎn),

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文樂(lè)隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強(qiáng)語(yǔ)文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為自然對(duì)數(shù)的底數(shù)),, .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,向量,函數(shù).

(1)求的單調(diào)減區(qū)間;

(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到的圖象,求函數(shù)的解析式及其圖象的對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案